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Abstract 
 
Microbial contamination is a serious problem for food industries, potentially leading to foodborne diseases that affect human 
health. Petroselinum crispum, popularly known as parsley, can be used for the production of biologically active essential oil. 
Considering the demand for novel natural products to control microorganisms, this study aimed to analyze the chemical 
composition and antibacterial activity of P. crispum essential oil from organic cultivation. Essential oil was extracted by 
hydrodistillation from the aerial part of P. crispum cv. plain (plain leaf type) at 70 days of age and analyzed for chemical 
composition by gas chromatography–mass spectrometry (GC-MS). Antibacterial activity was evaluated against five bacterial 
pathogens by the broth microdilution method. The essential oil yield was 0.02% and the major compounds were apiol (61.94%) and 
myristicin (9.33%). The minimum inhibitory concentration (MIC) of essential oil ranged from 1.70 to 10.00 mg mL

−1
, with the best 

activities against Staphylococcus epidermidis and Staphylococcus aureus. These results demonstrate that apiol-rich essential oil 
from organic P. crispum shows promise as an antibacterial agent in food and pharmaceutical industries. 

 
Keywords: Apiol, Foodborne diseases, Myristicin, Parsley, Phenylpropanoid. 
Abbreviations: GC-MS, gas chromatography–mass spectrometry; MIC, minimum inhibitory concentration. 
 
Introduction 
 
Foodborne illnesses caused by ingestion of pathogenic 
microorganisms are a major global public health problem 
(Eleftheriadou et al., 2017; Pisoschi et al., 2018). In 
developing countries, such illnesses cause an estimated 2.2 
million deaths per year, 86% of which are of children (Singh 
and Mondal, 2019). These alarming numbers highlight the 
need for disease monitoring and prevention (Schirone et al., 
2019). Furthermore, microbial deterioration reduces the 
shelf life of food products and results in the waste of 30 to 
50% of food supply (Krepker et al., 2017; Fung et al., 2018; 
Eleftheriadou et al., 2017). The impact generated by unsafe 
foods amounts to about US$95 billion annually in low- and 
middle-income countries (Jaffee et al., 2019). One of the 
Sustainable Development Goals proposed by the United 
Nations is to reduce worldwide per capita food waste by half 
in all sectors of the food chain by 2030, representing a 
sustainable manner of decreasing loss of natural resources 
(Santos et al., 2020). 
Emergence of antimicrobial resistance in foodborne 
pathogens stemming from inadequate use of antibiotics 
constitutes a worldwide problem and represents a challenge 
for food security (Prestinaci et al., 2015; Chouhan et al., 
2017) and a risk to human quality of life (Costa and Silva 
Junior, 2017). Food preservatives are used to inhibit or delay 

chemical and biological deterioration of food, thereby 
extending shelf life (Davidson et al., 2004). Synthetic 
antimicrobial preservatives are commonly used, but they are 
known to exert toxic effects (Bensid et al., 2020). Nitrates 
and nitrites are present in drinking water, natural and 
processed foods, air, and soil. Increased application of 
inorganic fertilizers and animal manure on agricultural land 
are the main factors contributing to the increase in nitrate 
concentration in rivers and soils (Parvizishad et al., 2017). 
Nitrite, when present in drinking water, may cause adverse 
health effects, leading to an increase in the occurrence of 
diseases in humans, such as colorectal cancer, thyroid 
disease, neural tube defects (Ward et al., 2018), and 
methemoglobinemia (Parvizishad et al., 2017). 
New strategies are being explored by food industries to 
select effective natural antimicrobials that contribute to 
product safety and prolong shelf life (Shen et al., 2017; 
Pisoschi et al., 2018; Frederico et al., 2021). Thus, it is 
necessary to investigate natural resources, such as plants, to 
potentially identify novel antimicrobial compounds. 
Petroselinum crispum (Mill.) Fuss, a medicinal aromatic plant 
popularly known as parsley and belonging to the family 
Apiaceae, is a herb native to the Mediterranean region and 
cultivated around the world (Mahmood et al., 2014). The 
herb is widely used as a culinary spice and flavoring agent 

https://www.sciencedirect.com/science/article/pii/S0223523417309984?casa_token=ftui_lwQAKYAAAAA:p9He_Rp0LZhRm_hNs6kgz9hbL7LalHByuP1G7ElL2hn_SKcYrRGokRxXkgul53e9OJihTGgqN6F4mA#!
https://www.sciencedirect.com/science/article/pii/S0223523417309984?casa_token=ftui_lwQAKYAAAAA:p9He_Rp0LZhRm_hNs6kgz9hbL7LalHByuP1G7ElL2hn_SKcYrRGokRxXkgul53e9OJihTGgqN6F4mA#!
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(Eddouks et al., 2017). P. crispum is rich in vitamin B, vitamin 
C, β-carotene, and zinc; the plant represents an important 
dietary component for bone strength because of its high 
content of boron and fluorine and presence of iron and 
calcium (Daradkeh and Essa, 2016). Some of its biological 
properties include cytoprotective, cardioprotective, 
hepatoprotective, nephroprotective, neuroprotective, 
spasmolytic, immunomodulating, antidiabetic (Farzaei et al., 
2013), diuretic, antibacterial, and antifungal effects (Cardoso 
et al., 2005; Lorenzi and Matos, 2008; Abdellatief et al., 
2017). Few studies, however, have assessed the 
antibacterial activity and inhibitory potential of P. crispum 
essential oil (Viuda-Martos et al., 2011; Teixeira et al., 2013; 
Linde et al., 2016). This study aimed to analyze the chemical 
composition and antibacterial activity of essential oil from 
organically grown P. crispum. 
 
Results 
 
Essential oil yield and chemical composition 
The essential oil yield from aerial parts of P. crispum was 
0.02% (w/w). Gas chromatographic analysis revealed 24 
compounds. The major identified were apiol (61.94%) and 
myristicin (9.33%) (Table 1).  
 
Antibacterial activity of essential oil 
The minimum inhibitory concentration (MIC) values for the 
essential oil of P. crispum ranged from 1.70 to 10.00 mg mL

−1 

(Table 2), whereas those of streptomycin and sodium nitrite 
were 0.003 - 0.50 mg mL

−1
 and 5 mg mL

−1
, respectively. The 

lowest MIC values of essential oil were observed against 
Staphylococcus epidermidis (1.70 mg mL

−1
) and 

Staphylococcus aureus (3.33 mg mL
−1

), being 3 and 1.5 times 
lower than that of sodium nitrite, respectively. Salmonella 
Typhi was the most resistant bacterium with MIC of 10.00 
mg mL

−1
.
 
 

 
Discussion 
 
Essential oil yields can vary depending on plant genetics, 
environmental characteristics, climatic conditions (e.g., 
temperature and luminosity) seasonality, plant 
developmental stage, harvest time, soil, and plant nutrition 
(Baser and Buchbauer, 2010; Morais, 2009). The yield of 
essential oil from P. crispum aerial parts has been reported 
to range from 0.03% to 3.2% (Petropoulos 2010; Viuda-
Martos et al., 2011; Borges et al., 2016; Linde et al., 2016; 
Ascrizzi et al., 2018; Pineda et al., 2018). Such findings 
indicate variations in essential oil yield from this species. The 
yield obtained in this study was slightly lower than the 
normal range, probably because of the above-mentioned 
factors. 
Petropoulos et al. (2010) investigated the effect of nitrogen 
on essential oil concentration and observed that yield also 
depends on plant type (subspecies) and tissues used for 
extraction. Petropoulos et al. (2008) found that the essential 
oil yield of flat and curly leaf cultivars increased from 0.04 to 
0.07% and from 0.05 to 0.11%, respectively, under water 
stress conditions. The essential oil yield of P. crispum grown 
in winter was lower (0.24%) than that of plants grown in 
summer (0.29%) (Vokk et al., 2011).  
The chemical composition of aromatic species is influenced 
by location, seasonality, stage of development, climate, time 
of day, nutrients, and other factors (Oliveira et al., 2012; 

Fonseca et al., 2007). Major compounds may differ 
depending on the response of plants to environmental 
conditions, which influence secondary metabolism (Morais 
and Castanha, 2012). In the study of Camilotti et al. (2015), 
the major compounds of P. crispum essential oil were apiol 
(41.05%) and myristicin (5.08%), accounting for 52.07% of 
the total composition. In the current study, the major 
compounds of P. crispum essential oil were also apiol 
(61.94%) and myristicin (9.33%). Although literature data 
show that P. crispum oil composition can vary greatly, apiol 
and myristicin generally appear as the major compounds, in 
agreement with our results (Table 3). 
Apiol is a phenylpropanoid found in the roots, seeds, and 
leaves of P. crispum (Punoševac et al., 2021), as well as in 
plants of the families Lauraceae (Xavier et al., 2020) and 
Piperaceae (Silva et al., 2017). The compound exerts 
antiproliferative (Wu et al., 2019), antioxidant, antibacterial, 
antihyperlipidemic, antihypercholesterolemic, 
antimycobacterial, chemopreventive, antidiabetic, anti-
inflammatory, and antifungal effects (Pineda et al., 2018), 
being applied in the treatment of uterus diseases and 
cervical ectropion (Prinsloo et al., 2018). The mechanism of 
action of phenylpropenes in bacteria consists in the 
destabilization of cell membranes (Gharib et al., 2017), 
bacterial efflux pumps (Gill and Holley, 2004), and the 
GTPase cell division protein FtsZ (Hemaiswarya et al., 2011). 
To the best of our knowledge, few studies have used the 
microdilution method to assess the antibacterial activity of 
P. crispum essential oil. Such a method was applied by Linde 
et al. (2016), who found that essential oil from the aerial 
parts of P. crispum (without seeds) inhibited the growth of 
all tested bacteria, with MIC values ranging from 0.04 to 
1.00 mg mL

−1
. The most susceptible bacteria were Listeria 

monocytogenes, Salmonella enterica, and Staphylococcus 
aureus; and the most resistant were Enterobacter cloacae 
and Escherichia coli. 
Other researchers used the disc diffusion method, which is 
simple and convenient (Jorgensen and Ferraro, 2009) but 
provides only qualitative results, with approximate MIC 
values (Balouiri et al., 2016). Teixeira et al. (2013) reported 
that commercial essential oil from P. crispum aerial parts 
had no antibacterial activity against E. coli or Salmonella 
Typhimurium. In the study of Viuda-Martos et al. (2011), P. 
crispum essential oil showed no activity against Listeria 
innocua, Serratia marcescens, or Pseudomonas fluorescens. 
Marín et al. (2016) reported that commercial essential oil 
from organic P. crispum had low activity against L. innocua 
but showed no inhibitory effect on P. fluorescens. Nawel et 
al. (2014) found that P. crispum essential oil showed high 
antimicrobial action against Bacillus cereus, average 
effectiveness against Clostridium perfringens, S. aureus, and 
Enterococcus faecalis, and no activity against E. coli. 
Gram-negative bacteria are generally more resistant to 
essential oils than Gram-positive bacteria (Trombetta et al., 
2005; Nazzaro et al., 2013), as also observed in our study. 
Such differences are found to occur because of the 
complexity of the cell wall of Gram-negative bacteria, which 
hinders the action of essential oils (Nazzaro et al., 2013; 
Oussalah et al, 2007). The structure of Gram-positive 
bacterial cell walls allows hydrophobic molecules to easily 
penetrate cells and act on the cell wall and within the 
cytoplasm (Nazzaro et al., 2013). Furthermore, variations in 
essential oil composition may affect biological activity. 
Abiotic   and   biotic   factors   should   be  considered  in  the  
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Table 1. Chemical composition from the essential oil of Petroselinum crispum aerial parts. 
Peak Compounds Molecular weight Chemical formula RI calculated RI theoretical Area (%) 

1 n.i   748  0.35 

2 Camphene 136.23 C10H16 889  0.45 

3 β-pinene 136.23 C10H16 946 974 1.70 

4 Myrcene 136.23 C10H16 980 988 0.71 

5 p-Cymene 134.22 C10H14 1019 1020 2.68 

6 β-Phellandrene 136.23 C10H16 1022 1025 0.95 

7 γ-Terpinene 136.23 C10H16 1048 1054 0.45 

8 m-Cymenene 132.20 C10H12 1081 1082 0.59 

9 Terpinolene 136.23 C10H16 1089 1086 1.34 

10 Camphor 152.23 C10H16O 1141 1141 0.69 

11 Camphene hydrate 154.25 C10H18O 1152 1145 2.83 

12 Terpinen-4-ol 154.25 C10H18O 1161 1174 3.15 

13 Myrtenal 150.22 C10H14O 1166 1195 1.06 

14 Germacrene d 204.35 C15H24 1498 1480 0.98 

15 α-Muurolene 204.35 C15H24 1501 1500 2.67 

16 γ-Cadinene 204.35 C15H24 1511 1513 1.15 

17 Cubebol 222.37 C15H26O 1516 1514 1.47 

18 Myristicin 192.08 C11H12O3 1524 1518 9.33 

19 Elemicin 208.25 C12H16O3 1540 1548 1.01 

20 Apiole 222.09 C12H14O4 1610 1620 61.94 

21 n.i   1780  1.61 

22 n.i   1880  1.20 

23 n.i   1887  0.92 

24 n.i   1898  0.70 

Total identified 100 

Monoterpenes hydrocarbons  8.87 

Monoterpenes oxygenated  7.73 

Sesquiterpenes hydrocarbons  4.80 

Sesquiterpenes oxygenated  1.47 

Phenylpropanoids  72.28 
RI calculated = identification based on the calculated retention index (RI) utilizing a standard homologous series of n-alkanes C7-C28 in Agilent HP-5MS UI column. RI theoretical= identification based on the comparison of mass spectra found in NIST 11.0 libraries (Adams, 2017). Area (%) = 
percentage of the area occupied by the compounds in the chromatogram; n.i. = non-identified.  

 
Table 2. Minimum inhibitory concentration (MIC) from Petroselinum crispum aerial parts essential oil and positive control streptomycin and sodium 
nitrite. 

Bacterium Essential oil  (mg mL-1) Streptomycin (mg mL-1) Sodium nitrite (mg mL-1) 

Staphylococcus aureus 3.33 ± 0.44b 0.01 ± 0.001a 5.00 ± 0.01c 

Escherichia coli 5.00 ± 0.00b 0.003 ± 0.001a 5.00 ± 0.00b 

Bacillus cereus 6.66 ± 0.88c 0.01 ± 0.004a 5.00 ± 0.02b 

Salmonella Typhi 10.00 ± 0.00c 0.12 ± 0.10a 5.00 ± 0.01b 

Staphylococcus epidermidis 1.70 ± 0.25b >0.50 ± 0.00a 5.00 ± 0.01c 

                              *Averages followed by different letters in the same row for MIC differ by Tukey’s HSD (honestly significant difference) teste (p≤0.05). 

 
Table 3. Major compounds from Petroselinum crispum essential oil aerial parts obtained by hydrodistillation. 

Major chemical compounds Country Source 

myristicin (32.75%), apiol (17.54%), α-pinene 
(16.64%), β-pinene (11.54%) and 1-allyl-2,3,4,5-tetrameth- 
oxy-benzene (10.00%). 
 

China Zhang et al. (2006) 
 

apiol (50.3%), myristicin 
(14.0%), and β-phellandrene (14.6%) 
 

Brazil Linde et al. (2016) 

1,3,8-p-menthatriene (24.2%), β-phellandrene (22.8%), apiol (13.2%), 
myristicin (12.6%), terpinolene (10.3%) and β-pinene (2.2%). 
 

Tunísia Snoussi et al. (2016) 

α-Pinene (3.1-13.9%), β-Pinene (1.6-30.6%), β-Myrcene (27.2–4.6%), β-phellandrene (39.0–22.0%), α-p-dimethylstyrene 
(11.6-12.7%) 

Grécia Petropoulos (2004) 

myrcene (23.8%),  
myristicin (39.7%), α-pinene (6.94%),  β-pinene (4.57%), α-phellandrene (1.11%), 1.3.8 p-menthatriene (17.1%),  
dillapiole (1.03%), bisabolole (0.71%) and camphor (0.11%) 
 

Egito  Nawel et al. (2014) 

α-pinene (32%) and β-pinene (19%) myristicin (18%), apiole 
(10%) and 1-allyl-2,3,4,5, -tetramethoxybenzene (13%) 
 

Brasil Kurowska (2006) 

β-pinene (3.35%), β- 
myrcene (6.76%), β-phellandrene (25.07%), ρ-1,3,8-menthatriene (5.49%), myristicin (28.63%) 
and apiol (2.91%) 

Brasil Filho et al. (2018) 

Parsley- or dill-apiole (43.25%) 
Myristicin or sarisan (30.8%) 
p-cymene (4.4%) 
Melilotal (3.8%) 
 

Colombia Pineda (2018) 
 
 

myristicin (30.7–42.7%), β-phellandrene (21.8–35.9%), p-1,3,8-menthatriene (5.4–10.0%), and 
β-myrcene (4.5–8.7%). 
 

Estonia Vokk et al., (2011) 
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production of natural compounds for use in industrial food 
processes (Linde et al., 2016). Our results revealed that P. 
crispum essential oil shows antibacterial activity mainly 
against S. epidermidis and S. aureus, two food pathogens. 
Given that their natural habitat is the skin and mucous 
membrane of animals, these microorganisms are often 
found in raw meat and milk, multiplying during fermentation 
processes (Gazzola and Cocconceli, 2008). S. epidermidis is 
an environmental microorganism part of the normal flora of 
the skin (Kannappan et al., 2020). The pathogen is known to 
cause medical device-related infections (Dobinsky et al., 
2003) because of its ability to form biofilms (Otto, 2019). It 
has emerged as one of the most important opportunistic 
pathogens, owing to its capacity to attach to industrial 
equipment surfaces (Gomes, et al., 2011; Zou and Liu, 2018). 
Thus, the ability of S. epidermidis to form biofilms plays a 
key role in food contamination (Zou et al., 2019). S. aureus is 
one of the main causes of foodborne illness outbreaks 
associated with foods contaminated with enterotoxins, such 
as meat products, poultry, eggs, dairy products, and bakery 
products (Greig et al. 2007). In the current study, the MIC 
values of essential oil against S. aureus and S. epidermidis 
were 1.50 and 3 times lower, respectively, than those of 
sodium nitrite. Nitrite can oxidize hemoglobin to 
methemoglobin, reducing the amount of oxygen in the 
blood, possibly leading to coronary ischemia and stroke 
(Katabami et al., 2016). Furthermore, nitrite can be 
converted into nitrosating agents and form N-nitrous 
compounds, especially N-nitrosamines in processed meat, 
which may exert carcinogenic and mutagenic effects (Chetty 
et al., 2019). Thus, P. crispum essential oil could be a natural 
alternative to control these bacteria. 
 
Materials and methods 
 
Plant material 
Aerial parts (leaves and stems) of P. crispum cv.  plain (plain 
leaf type) at 70 days of age were acquired from an organic 
system located at coordinates 23°43′35.1″S and 
53°34′43.6″W. The plant material was harvested in the 
morning, immediately after dew evaporation, in July 2020. 
 
Essential oil extraction 
For essential oil extraction, aerial parts were dried at room 
temperature. Then, 200 g of dry material was ground in an 
industrial blender with 2.5 L of reverse osmosis-deionized 
water and hydrodistilled for 2 h in a Clevenger apparatus 
(Linde et al., 2016). The oil was withdrawn from the 
apparatus with n-hexane, filtered through anhydrous 
sodium sulfate (Na2SO4), stored in an amber flask, and kept 
at -4 °C until complete solvent evaporation. Essential oil 
yield (%) was calculated according to Eq. 1: 

      ( )  
                     ( )

             ( )
        (1) 

 
Chemical composition of Petroselinum crispum essential oil 
Chemical identification of essential oil components was 
carried out using a gas chromatograph (Agilent 7890B) 
coupled to a mass spectrometer (Agilent 5977A MSD) (GC- 
MS). Separation was achieved using an HP5-MS UI 5% 
capillary column (30 m × 250 µm × 0.25 µm; Agilent 
Technologies). The oven temperature was set at 60 °C, 
increased to 280 °C at 3 °C min

−1
, and maintained at this 

temperature for 1 min. Helium was used as carrier gas at 
300 °C and a linear speed of 1 mL min

−1
 with a pressure 

release of 8.23 psi. The injector temperature was 220 °C. 
Sample injection (1 µL) was performed in split mode (20:1), 
and the injector temperature was kept at 220 °C. The 
temperatures of the transfer line, ion source, and 
quadrupole were 260, 230, and 150 °C, respectively. Mass 
detection was performed in scan mode in the range of 40 to 
500 m/z with a solvent delay of 3 min (Linde et al., 2016). 
Compounds were identified by comparison of their mass 
spectra with data from the NIST 11.0 library and comparison 
of their retention indices with those of a standard series of 
homologous n-alkanes (C7–C28) (Adams, 2017). 
 
Antibacterial activity 
 
Microorganisms 
The antibacterial activity of essential oil was tested against 
five bacterial strains: Staphylococcus aureus NEWP 0023, 
Escherichia coli ATCC 1284, Bacillus cereus ATCC 14579, 
Salmonella Typhi NEWP 0028, and S. epidermidis ATCC 
12228. For the assays, bacterial cells were cultured for 8 h 
and the cell pellet was collected. The concentration of 
bacterial cells was adjusted to 0.5 on the McFarland scale 
(1.5 × 10

8
 colony-forming units, CFU mL

−1
) with sterile saline 

by measuring the absorbance at 625 nm on a 
spectrophotometer (Spectra Max Plus). Then, the 
suspension was diluted 1:10 in Mueller–Hinton broth to 
obtain a cell density of 1.5 × 10

5
 CFU mL

−1
, and the inoculum 

was used in the assays. 
 
Determination of antibacterial activity by the broth 
microdilution method  
The MIC of P. crispum essential oil against the above-
mentioned microorganisms was determined by serial 
microdilution in 96-well microplates. For each 
microorganism, a standard suspension was prepared in 
saline solution as previously described. The MIC was 
determined according to the broth microdilution method 
(CLSI, 2018) modified for natural products. The essential oil 
was dissolved in 2% (v/v) Tween 80 and tested at final 
concentrations ranging from 0.078 to 10 mg mL

-1
 in a total 

volume of 100 μL (culture medium and sample). After serial 
dilution, 50 µL of inoculum was added to each well, and 
plates were incubated at 35 °C for 24 h. Then, 10 μL of 1.0% 
2,3,5-triphenyltetrazolium chloride (Reatec

®
) indicator was 

added to each well, and microplates were further incubated 
for 10 min at 37 °C. The MIC was defined as the lowest 
concentration that inhibited bacterial growth as assessed 
visually. The antibiotics streptomycin (Sigma) (0.0039 to 0.50 
mg mL

-1
) and sodium nitrite (5 to 50 mg mL

-1
) were used as 

positive controls. 
 
Statistical analysis 
Antibacterial assays were performed in triplicate. Results are 
expressed as arithmetical mean and standard deviation. 
Data were subjected to one-way analysis of variance 
(ANOVA) followed by Tukey’s honestly significant difference 
test at the 5% level. Statistical analyses were carried out 
using Statistica

®
 software version 8.0. 

 
Conclusion 
 
P. crispum contained 0.02% essential oil. Chromatographic 
analysis identified 24 compounds, of which the major were 
apiol and myristicin. The essential oil showed antibacterial 

https://onlinelibrary.wiley.com/doi/full/10.1002/fsn3.1283#fsn31283-bib-0029
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activity, mainly against S. epidermidis and S. aureus. This 
study demonstrated the potential of essential oil from P. 
crispum as an alternative antimicrobial agent for food, 
agricultural, and pharmaceutical applications. 
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