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Abstract 
 
This study evaluated the stability and adaptability of common peanut cultivars (Arachis hypogaea L.) in three locations across 
northern Mozambique over four years, using the additive main effects and multiplicative interaction model (AMMI) under a 
Bayesian approach. The multi-environmental data consisted of 20 genotypes evaluated in three locations. We analyzed grain yield 
in tons per hectare in a complete randomized block design for each location. The results indicated that genotypes with higher 
marginal yield contribute to the genotype by environment interaction (GEI) and thus are not largely recommended for the entire 
target environment. The Namapa (NMP) location showed consistent behavior and did not contribute to the GEI effect, and in this 
sense, G6 and G7 would be the best indications for this location. Moreover, genotypes considered stable, with emphasis on the 
G20 genotype, did not have a good average yield. Mapupulo (MPPL) and Nampula (NLP) had a significant contribution to GEI, and 
the best genotypes for these locations were G7 and G3, respectively. In this sense, the results of the analysis specified that using 
genotypes in specific environments would be the best strategy to decrease the effect of GEI and increase peanut productivity in the 
environments considered.   
 
Keywords: Bayesian inference; genetic merits; genotype × environment interaction; multi-environment data; prediction. 
Abbreviations: AMMI_additive main effects and multiplicative interaction; AMMI-2_ AMMI model fitted with two bilinear 
components; BAMMI_Bayesian-AMMI; BAMMI-2_Bayesian-AMMI fitted with two bilinear components;  boa_Bayesian output 
analysis;   E_environment; G_genotype; GEI_genotype × environment interaction; HPD_highest posterior density; ICRISAT_ 
International Crops Research Institute for the Semi-Arid Tropics; MET_multi-environment trial; MPPL_Mapupulo; NLP_Nampula; 
NMP_Namapa; NSC_ National Seed Committee; PC1_ first principal component; PC2_ second principal components. 
 
Introduction 
 
Peanuts are an important source of food and are either used 
as oil or for consumption. The Government of Mozambique 
periodically publishes a list of varieties that can be legally 
distributed or sold in the country. To enter this list, a new 
variety must first be registered and released by the National 
Seed Committee (NSC) (Rohrbach et al., 2001). Providing 
technical details of the evaluation and registration and 
releasing the varieties are responsibilities of a subcommittee 
whose deliberations must be confirmed by the NSC. 
Variety release requires at least three years of testing at 
research stations and farmers’ fields in Mozambique. A new 
variety must have higher productivity or quality compared to 
the existing ones. Moreover, the variety must also show less 
susceptibility to the main diseases and pests. Palatability and 
processing qualities are considered advantageous but are 
not required for release. Plant breeders use data from multi-
environmental trials (MET) to select superior genotypes. 
One of the major obstacles for selecting superior genotypes 
is the presence of the genotype-by-environment interaction 
(GEI), which is characterized by the differential response of 

the genotypes to a change in the environment. Thus, GEI 
studies are extremely important in breeding programs, as 
they allow for the selection of widely or specifically adapted 
genotypes, as well as the location for the next breeding 
cycles, among other advantages (Vargas et al., 2015; 
Hernández et al., 2019; Alvarado et al., 2020). Therefore, 
while modelling MET data, one should consider the GEI 
effect accurately and include appropriate genetic and non-
genetic effects according to the sources of variation 
associated with the experimental designs. These analyses 
should provide breeders with clear and accurate information 
to support their selection (Smith and Cullis, 2018). In 
general, a GEI study includes adaptability and stability. 
Adaptability refers to the ability of a genotype to respond 
positively to the stimulus of the environment, whereas 
stability refers to the highly predictable behavior of 
genotypes in the face of environmental diversity (Souza et 
al., 2020). Different methodologies for assessing adaptability 
and stability have been developed and improved. Such 
procedures are based on analysis of variance, linear and 
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non-linear regression, multivariate analysis, and non-
parametric statistics (Crossa, 1990; Smith et al., 2015; 
Nuvunga et al., 2019). Of the methodologies used in the 
evaluation of GEI, those based on multiplicative analysis 
allow for a more careful exploration of the response pattern 
of genotypes between environments. The advantage of 
multiplicative methods lies in their ability to separate noise 
patterns, the possibility of grouping similar environments 
and genotypes, and the flexibility to identify genotypes with 
the greatest potential in each subgroup of environments. 
This analysis is relatively simple owing to the use of graphic 
representations, named biplots (Gabriel, 1971; Yan, 2016). 
Among the multiplicative models, AMMI (additive main 
effects and multiplicative interactions) has been widely used 
by plant breeders in the analysis of MET data (Hadasch et al., 
2017; Shahriari et al., 2018).  Recent studies propose the 
application of the Bayesian methodology to the AMMI 
analysis. Bayesian-AMMI (BAMMI) provides meaningful 
advantages and broad perspectives for the analysis of MET 
data. Bayesian modeling provides flexibility to treat 
unbalanced data and heterogeneous environmental 
variance, enabling more accurate estimates of bilinear 
parameters (Oliveira et al., 2015; Silva et al., 2015; Romão et 
al., 2019; Silva et al., 2019; Nuvunga et al., 2021; Oliveira et 
al., 2021). Moreover, the Bayesian paradigm includes a 
flexible parametric method to incorporate inference in to 
the biplot through bivariate credible regions for genotypic 
and environmental scores and the incorporation of 
information from previous experiments, using proper prior 
distributions (Perez-Elizalde et al., 2012; Jarquín et al., 2016; 
Silva et al., 2020). The main objective of this study was to 
evaluate the adaptability and stability of common peanut 
varieties (Arachis hypogaea L.) in northern Mozambique 
using the Bayesian AMMI model. 
 
Results 
 
Properties of Markov chains 
All posterior samples (Markov chains) generated showed 
good convergence properties. Trace plots from the samples 
and marginal posterior densities for variance components 
are shown in Figure 1. Figures 1(A) and 1(C) illustrate the 
convergence properties.  Samples can be considered 
independent in the posterior distribution. 
 
Analyzing the main effects of genotypes  
Point and interval posterior estimates for singular values and 
components of variance are shown in Table 1. The first two 
main axes explained 98% of the GEI sum of squares. The  
AMMI-2 biplot representation in the plane defined by the 
first two principal components (PC 1 and PC 2) could thus be 
considered representative of the analyzed data.  
In Figure 2, the marginal posterior means of genotypic 
effects and their highest posterior density (HPD) 95% 
credibility regions are presented, ranked in increasing order 
of magnitude from left to right. Overlaps indicated similar 
yields. However, the interval estimate for G12 did not 
incorporate the zero value, indicating that, at the level of 
credibility considered, the yield of this genotype is likely to 
be higher than the general mean.   
 
Biplot analysis of GEI interaction 
Stability information could be obtained by analyzing the 
AMMI-2 biplot representation (Figure 3). For this analysis, 
the uncertainty of the genotypic and environmental scores 

was quantified by incorporating bivariate HPD (95%) 
credibility regions. Only regions not including the origin were 
represented to facilitate interpretations, as the others 
presented no relevant interaction. 
Subgroups composed of genotypes and environments with 
similar GEI effects (homogeneous) are ascertained by 
identifying positions, directions from the origin, and overlaps 
in the bivariate regions in relation to the quadrants in the 
biplot (Júnior et al., 2018). Although there were overlaps, 
homogeneous subgroups of genotypes {G6, G12, G15} and 
{G1, G17} could be identified to the left of PC1. Another 
homogeneous subgroup {G2, G3, G7, G10, G11, G14} could 
be identified to the right of PC1. The main homogeneous 
subgroups of environments were {E1, E3, E15}, {E4, E10}, 
and {E9, E12}. The genotypes and environments not 
represented in the biplot comprised separable subgroups 
(genotypic and environmental) that did not contribute 
significantly to the GEI effect (stable). Adaptability and 
genotype recommendations to specific environments are 
also based on the positions and overlaps of the bivariate 
regions in the quadrants.  
The analysis of the information from the biplot and that 
shown in Figure 1 shows that G6 and G12, which have the 
highest yield, contributed significantly to GEI and therefore 
are not frequently recommended. These genotypes, 
together with G15 and G17, were positively associated with 
E1 and E3 environments. Other associations included the 
association between the subgroup of genotypes to the right 
of PC1 and the subgroup {E9, E12} and the association 
between the G1 genotype and environments E4 and E10. 
However, it should be emphasized that the environments 
represented incorporate locations and crop seasons (Table 
3), and a more detailed analysis must be conducted.  
The NLP site, which corresponds to environments E1, E4, E7, 
and E10, made an important contribution to GEI in 2014, 
2015, and 2017 crop seasons, showing consistency in the 
2015 and 2017 crop seasons and stability in 2016. Similarly, 
the MPPL site (E3, E6, E9, E12) showed consistency in the 
2016 and 2017 crop seasons, stability in 2015, and different 
results, compared to those in the other crop seasons, in 
2014. The NMP site, in turn, showed consistency in all 
experiments and could be considered stable, making no 
important contribution to GEI.  
Thus, although the genotypes to the left of the biplot were 
adaptable to the NLP and MPPL sites, only in the 2014 crop 
season were they usually not adequate for these locations 
and indicated only for NMP, which, in turn, did not 
contribute to GEI. The best genotypes for NMP were the two 
with the stronger main genotypic effect (G12 and G6; Figure 
1). The best genotypes were thus G7 and G3 for NLP and 
MPPL, respectively.  
 
Discussion 
The evaluation of the productivity of peanut cultivars for 
different crop seasons and environmental circumstances is 
necessary to form inferences on the adaptability and 
stability for different cultivars, regions, and situations of 
water availability (Távora and Melo, 1991). As noted, the 
NLP and MPPL sites seem to have been affected by some 
factor in the 2014 crop season (this year was atypical), 
contrasting the other crop seasons, as identified by the 
biplot interpretation, and this might be due to low 
precipitation in that year. Thangthong et al. (2018) 
emphasized that many peanut breeding programs are 
seeking to improve the productivity of genotypes under  
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           Table 1. Point and interval posterior estimates of distributions of singular values and components of variance. 

Parameters Mean Sd HPD intervals (95%) 

LL UL 

λ1 7.500 0.599 6.335 8.678 

λ2 4.341 0.682 3.027 5.670 

λ3 1.292 0.962 <0.001 3.078 

λ4 0.422 0.402 <0.001 1.255 

λ5 0.189 0.222 <0.001 0.656 

λ6 0.090 0.125 <0.001 0.356 

λ7 0.044 0.075 <0.001 0.198 

λ8 0.022 0.043 <0.001 0.098 

λ9 0.011 0.026 <0.001 0.051 

λ10 0.005 0.015 <0.001 0.026 

λ11 0.003 0.009 <0.001 0.013 

  
  0.064 0.037 0.014 0.144 

  
  0.6521 0.0515 0.556 0.758 

Sd, standard deviation; HPD, highest posterior density; LL, lower limit; UL, upper limit. 
 

 
Fig 1. Trace and density plots of the marginal posterior distributions for genotypic variance in (A) and (B), and error variance (C) and 
(D), obtained from the markov chains generated in the sampling process. 
 

Table 2.  Geographic and climatic characteristics of the locations where the experiments were conducted in Mozambique. 

District Province Location Climate Ground Precipitation 
(mm) 

Temp 
(° C) 

Altitude 
(m) 

Eráti Nampula 13 ° 13 '17 "S, 
38 ° 52 '34 "E 

Tropical-
humid 

Sandy 800-1000 25-37 228 

Montepuez Cabo 
Delgado 

13 ° 06'18.3 "S 39 
° 01'22.9" E 

Semi-arid, 
Subhumid 

Alluvial 1300-1500 20-25 200-500 

      Temp= Temperature. 
 

 
 
Fig 2. Highest Posterior Density (HPD) credibility intervals (95%) for the main effects of genotypes (G) for the 20 peanut hybrids 
evaluated in three districts of Northern Mozambique. HPDs are ranked in ascending order of their posterior averages. Genotypes 
with HPD that do not cross zero baseline are good to selection for average environment. 
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Table 3. Environments composed of the combination of locations with crop seasons. 

Location Year Environments 

Nampula (NLP) 2014/15 E1 

Namapa (NMP) 2014/15 E2 

Mapupulo (MPPL) 2014/15 E3 

Nampula (NLP) 2015/16 E4 

Namapa (NMP) 2015/16 E5 

Mapupulo (MPPL) 2015/16 E6 

Nampula (NLP) 2016/17 E7 

Namapa (NMP) 2016/17 E8 

Mapupulo (MPPL) 2016/17 E9 

Nampula (NLP) 2017/2018 E10 

Namapa (NMP) 2017/2018 E11 

Mapupulo (MPPL) 2017/2018 E12 

 

 
Fig 3. Bivariate HPD credibility regions (95%) for genotypic (G) and environmental (E) scores in bayesian AMMI biplot considering 
the first two principal components (BAMMI-2) . Multi-environmental trial for 20 peanut hybrids in three districts of Northern 
Mozambique. Just the regions that do not enclose the origin (0,0) are depicted to better illustrate GE interactions. 
 

 
Fig 4. Map from the Northern Mozambique showing in pale yellow the provinces in which the peanut hybrids experiments were 
installed. 
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water deficiency. However, atypical climate changes have 
been observed recently, characterized by times with normal 
rainfall (ideal for cultivation), very intense rains, and severe 
droughts (Carrega et al., 2019). In our study, 2016 was 
characterized by intense (above normal) rainfall (INAM, 
2017). When very heavy rains or severe droughts occur, the 
damage caused to crops is generally quite significant, which 
has increased the importance of studies on water stress 
within the peanut breeding programs (Paz et al., 2000; 
Kambiranda et al., 2011). The stress caused by water 
deficiency reduces the stomatal resistance, photosynthetic 
rate, transpiration, leaf temperature, leaf water potential, 
and vegetative mass, among others, causing a drop in 
productivity (Larcher et al., 1981) and impairments in the 
quality of the grains or the viability of the seeds, mainly 
owing to the lack of water during the filling of the pods 
(Carrega et al., 2019). Thus, one of the main features of a 
cultivar/variety of any crop is its ability to perform well 
when grown under different environmental conditions, 
which was not observed in any peanut cultivar evaluated 
here. Although the G20 genotype had better performance 
among the stable genotypes, it did not show a higher yield in 
any of the locations that make up the target environment. 
Thus, none of the tested genotypes performed well in all 
environments. This is due to the existence of cross-GEI, as 
reported here, and this represents a major challenge for 
breeders concerned with controlling genetic variability. 
 
Materials and Methods 
 
Plant materials 
The treatments comprised 20 genotypes (cultivars) of 
common peanuts (A. hypogaea L) that were made available 
by International Crops Research Institute for the Semi-Arid 
Tropics (ICRISAT-Malawi) in an advanced generation. The 
genotypes were as follows: ICGV-SM 01731 (G6); ICGV-SM 
03590 (G14); ICGV-SM 06637 (G2); ICGV-SM 90704 (G20); 
ICGV-SM 07544 (G13); ICGV-SM 06518 (G1 ); ICGV-SM 08501 
(G8); JL-24 (G19); ICGV-SM 05593 (G15); ICGV-SM 05688 
(G12); CG-7 (G18); ICGV-SM 02724 (G10); ICGV- SM 
08503(G9); ICGV-SM 07599 (G11); ICGV-SM 03710 (G7); 
ICGV-SM 06525 (G3); ICGV-SM 06519 (G3); ICG 12991 G16); 
ICGV-SM 07517 (G17); ICGV-SM 08560 (G5). These materials 
are the results of crosses between Spanish and Virginia lines. 
Crossings and selection were carried out under controlled 
conditions by ICRISAT-Malawi, which is one of the main 
suppliers of genetic material to countries in the sub-Saharan 
region. The objective of these crosses was to obtain tolerant 
or even resistant genotypes to the rosette. Material 
identified as promising was evaluated for adaptation to 
rosette tolerance in different agroecological conditions in 
northern Mozambique. 
 
Characteristics of experimental area 
The trials were carried out in Namapa (District of Eráti, 
province of Nampula), Mapupulo (district of Motepuez, 
province of Cabo Delgado), and district of Namuno (province 
of Cabo Delgado) located in northern Mozambique, during 
the 2014/15, 2015/16, 2016/17, and 2017/18 crop seasons. 
Geographic and climatic characteristics of the locations 
where the trials were performed are shown in Table 2. A 
map with the locations where the tests were performed is 
shown in Figure 4.  
The different combinations between locations and crop 
seasons resulted in 12 different environments, as shown in 

Table 3. Thus, the multi-environmental data analyzed are 
comprised of 20 genotypes evaluated in 12 environments.  
    
Experimental design 
In each location, a complete randomized block design was 
used, with two replications and plots consisting of four rows 
of 5 m, spaced 0.6 m apart, with a sowing density of 20 
viable seeds per linear meter, considering the two central 
lines as a useful plot. Basic fertilization was performed in 
accordance with the chemical analysis of the soil. Weed and 
pest control was performed according to the technical 
recommendations for the crop. The yield of shelled peanuts 
per plot was measured in t/ha and adjusted to 10% 
moisture. 
                        
Statistical methods 
 
AMMI Bayesian Model 
The AMMI model for the vector     , containing n = lcr 
phenotypic responses, where the terms l, r, and c are the 
number of repetitions, number of genotypes, and number of 
environments, respectively, can be represented as follows: 
 

         ∑                
 
                   (1)                    

Where        and       are vectors containing the effect 
parameters of hierarchical blocks within environments and 
main effects of genotypes, respectively. Bilinear 
terms        and    are the singular values, unique 
genotypic, and environmental vectors associated with the k-
th principal component, respectively, with k = 1, …, t and  t = 
min(r, c) being the rank of the matrix of GEI. The matrices 
  ,   , and   are design matrices and   is the random error 
effect vector, with           

     and   being the null 
vector and    the n-order identity matrix.  
The bilinear components of model (1) were subject to order 
(for singular values) and orthonormalization restrictions to 
singular vectors. Conditional data distribution was the 
normal multivariate, as follows: 
              

            
                                           (2) 

with          ∑                
 
   , and   

  
being the residual variance.  
 
Prior distributions 
The a priori distributions used for the model parameters 

were as follows:        
   (     

 ) with      and 

  
      ;        

           
  , considering      and 

  
  

 

  
  ;       

    

     (   
    

 ), assuming that    
   

and    

     . Uniform spherical densities in the corrected 

subspace were assigned to singular vectors    and   , and 
Jeffrey’s priori was assigned to experimental variance 
   

     
 ⁄   . 

 
Posterior distributions, sampling, and inference 
Posterior complete conditional distributions were used in 
the sampling, using a Gibbs sampler. The algebraic detailing 
of how these distributions were obtained and a description 
of the iterative sampling algorithm can be found in Oliveira 
et al. (2015). The convergence of the generated chains was 
assessed based on the criteria of Raftery and Lewis (1992) 
and Heidelberger and Welch (1983).  
Estimates for the linear parameters of the model, variances, 
and singular values were obtained by the posterior means of 
Markov chains and the implementation of HPD regions, 
using the boa package (Smith, 2007). The bivariate 95% 
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credible regions for genotypic and environmental scores 
were implemented using the method described by Hu and 
Yang (2013). 
All analyses were performed using the statistical software R 
(R Core Team 2018). To generate posterior samples (Markov 
chains), the first 8000 iterations were excluded (burn-in) to 
avoid the influence of initial values. Samples were collected 
after every 10 observations (thinning) to avoid 
autocorrelation in the chain. Highest posterior 
densityregions of 95% credibility were computed from 
marginal distributions when appropriate. 
 
Conclusion 
 
The NLP site (Namapa) showed consistency over the crop 
seasons and is stable. The other locations contribute to the 
interaction, not being consistent in all years; that is, they are 
influenced by the genotype × environment × year 
interaction. Genotypes with the highest yield contribute to 
the GEI effect, having specific recommendations. Although 
the best stable genotype was G20, the recommendation 
needs to consider negative values as values that can also 
occur.   
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