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Abstract: Soybean is one of the most important commodities on a global scale. Therefore, studies in
precision agriculture (PA) are essential to maximize economic return and minimize environmental impacts.
In this context, conducting interpolations to map soybean productivity and soil attributes plays a crucial role
on decision-making and should represent an efficient estimate of actual field conditions. In this situation,
the study employed the geostatistical Wave model to assess local influences on several response variables,
including soybean productivity, soil resistance to penetration, copper content, and soil pH. The model
accounts for spatial dependence in the data, particularly when the semivariance exhibits the ‘hole effect’.
Techniques for diagnosing local influence were developed for spatial data using the Wave model and the
results showed that the identification and removal of influential observations caused relevant changes in
the estimates of parameters that define the structure of spatial dependence, directly impacting the
construction of interpolated maps. This interferes with the creation of differentiated management zones,
considering profitability and soil attributes. These findings highlight the importance of considering local
influence when analyzing spatial data to ensure the accuracy of the results obtained.

Keywords: geostatistics; kriging; local influence diagnosis; maximum likelihood; productivity map, spatial data analysis, spatial statistics.
Abbreviations: AIC_Akaike Information Criterion; BIC_Bayesian Information Criterion; Cu_soil copper content; Cu#36_copper without
the influential observation #36; ML_maximum likelihood; PA_precision agriculture; pH_soil pH; pH#99_soil pH without the influential
observation #99; Prod_soybean productivity; Prod#85_soybean productivity without the influential observation #85; RSPg 210 30m_soil
penetration resistance at a depth of 0.21 to 0.30 meters depth layer; RSPy 21— .30m #46_soil penetration resistance in the 0.21 to 0.30 meters
depth layer without the influential observation #46; SDI_Spatial Dependency Index.

Introduction

Precision agriculture is an innovative approach aimed at
optimizing agricultural crop management, taking into account
the spatial and/or temporal variability of factors affecting
production. This approach brings various potential benefits, such
as improvement in crop quality, reduction of environmental
impact, increased sustainability, ensuring food security,
promoting economic development, and enhancing profitability
and productivity (Zain et al., 2024).

To implement precision agriculture, it is necessary to use
methods that allow for describing and modeling the spatial
variability of natural phenomena, as well as estimating values at
unsampled locations. Among the existing methods in precision
agriculture studies, geostatistics stands out, offering adaptations
of classical statistical techniques to take advantage of the special
dependence present in the data to generate interpolated maps
(Uribe-Opazo et al., 2023, Lorbieski et al., 2023). In this context,
kriging is a geostatistical interpolation method, defined by Isaaks
and Srivastava (1989) as the best spatial linear interpolator with
minimum variance.

Kriging requires fitting theoretical models to the experimental
semivariogram, which is a function that measures the degree of
spatial dependence of a georeferenced variable (Uribe-Opazo et
al., 2012). The most common models used in geostatistics are the
Exponential, Spherical, Gaussian, and Matérn family models
(Cressie, 2015). These models are monotonic and increasing,
meaning they continuously increase with the distance between
points.
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However, in some cases, the semivariogram may exhibit non-
monotonic behavior, meaning it does not continuously increase
with distance, indicating high values surrounded by low values,
generating a sinusoidal movement of the semivariance function,
known as the "hole effect". For these cases, Wave model is the
most suitable, as it can more effectively handle the non-
monotonic variation of the semivariogram (Carvalho et al., 2009;
Dalposso et al., 2022).

According to Dalposso et al. (2022), neglecting these non-
monotonic structures in the analysis can lead to erroneous
interpretations, as the adopted model may not reproduce the
observed patterns of spatial variability. Additionally, the
presence of influential observations can significantly alter the
results of spatial dependence analyses and, consequently, the
construction of maps generated by kriging.

To assess whether observations can cause distortions in spatial
dependence models, Cook (1986) proposed inducing small
perturbations in the model or data. This technique, known in the
literature as local influence, takes into account geometric
differentiation and deviation from likelihood, which was
employed as a procedure to evaluate the influence of
observations (Uribe-Opazo et al., 2012; De Bastiani et al., 2015).
Precision agriculture has benefited from various studies on local
influence analysis, as proposed by De Bastiani et al. (2015),
Dalposso et al. (2021) and Uribe-Opazo et al. (2021, 2023). These
studies contribute to advancing knowledge in the field. However,
there are still no works addressing the diagnosis of local
influence in the context of the Wave geostatistical model.
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Fig 1. Location of the 102 sampling points.

In this context, this study aimed to develop and apply techniques
for diagnosing local influence on the response variable when
employing the Wave model to describe the spatial variability of
soybean productivity, crucial for crop profitability; soil copper
content, influencing plant growth; soil pH, affecting nutrient
availability; and soil penetration resistance, impacting root
development. The local influence diagnosis techniques allowed
for identifying influential observations on the response variable,
highlighting observations that may affect parameter estimates,
model-predicted values, and the construction of maps through
kriging

Results and discussion

Exploratory analysis

Table 1 displays the descriptive statistics of the variables:
soybean productivity (Prod [t ha™1]), soil copper content (Cu
[mg dm™3]), soil pH (pH) and soil penetration resistance at a
depth of 0.21 to 0.30 m (RSPy,1_030m [MPa]). During the
2022/2023 growing season, the average soybean productivity in
the monitored area was 1.533 t ha™!, considered low compared
to the state's productivity (3.860 t ha™!) and national (3.507
t ha™') in the same period (Conab, 2023). These results are lower
than those found by Dalposso et al. (2021) who conducted
studies on soybean productivity in the same city where the
experiment was carried out.

The results also indicate that the average soil copper content was
classified as low (0.69 mg dm™3) according to Santos and Silva
(2001). Conversely, the average pH value (5.82) was considered
high by the same authors. This result is higher than that found
by Dalposso et al. (2018), who conducted experiments on soil pH
content in the same city where the study was conducted.
Regarding RSPy 51-930m, the average was 2.19 MPa, indicating
a low level of soil compaction, with little limitation on root
development, according to Canarache's criteria (1990).

Soybean productivity and soil copper content showed the
highest coefficient of variation, indicating heterogeneity (CV =
30%). Similar results were found by Maltauro et al. (2023), who
conducted a trial in the same region where this research was
carried out. None of the variables under study presented outliers.
The spatial distribution of the sample values was analyzed using
a post-plot chart, presented in Figure 2. This chart allows for
checking the presence of clustering and directional trends of
high or low sample values.

Figure 2(a) shows that, overall, the highest soybean productivity
values (t ha™1) are located in the central and southern regions of
the monitored area. Conversely the northern and central regions
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predominantly present samples in the two lower classes of the
chart (minimum value up to the median), indicating a region of
lower productivity. Figure 2(b) reveals that the highest copper
values are concentrated in the southwest region, which stands
out as the richest in this nutrient. Figure 2(c) indicates that the
lowest pH values are concentrated in the northern and
southeastern regions, characterizing more acidic soil. Figure 2(d)
indicates that the highest values of RSPy 1 _¢.30m are located in
the central and northern regions, suggesting greater limitation
to root growth.

Variographic analysis

For the spatial dependence analysis, 11 lags up to a distance of
880 meters (50% cutoff point) were considered (Clark, 1979). The
semivariogram was examined in directions 0°, 45°, 90°, and 135°
and confirmed that the data are isotropic (Guedes et al., 2013).
The analysis of the experimental semivariogram revealed an
oscillatory behavior of the semivariances, characterized by
alternating increases and decreases. This pattern has been
reported in other studies on precision agriculture (Santra et al.,
2008; Amirinejad et al., 2011; Dalposso et al., 2022) and was best
fitted by the Wave model. This model is suitable for data with
periodicity, which generate a "hole effect" due to positive and
negative correlations between distant regions (Mahdi et al,
2020). The maximum likelihood method was used to estimate the
parameters of the spatial dependence structures observed in
Figure 3. The fitted models included Exponential, Gaussian,
Matérn family with smoothing parameters k = 0.7, 1.0, and 2.0 as
well as the Wave model.

Utilizing cross-validation criteria (Faraco et al., 2008), the Akaike
Information Criterion - AIC (Akaike, 1973), and the Bayesian
Information Criterion - BIC (Schwarz, 1978), the Wave model
demonstrated the best performance for all the variables under
study (Prod [t ha™1], Cu [mg dm™3], pH, RSPy 21_0.30m [MPa])
(Table 2).

Based on the results of the Spatial Dependency Index - SDI
(Table 2), it is evident that soybean productivity is associated
with strong spatial dependence among the observations (SDI >
24%). Additionally, a relationship of moderate spatial
dependence among the observations for copper is observed, pH
and RSP0.21—0.30m (11% <SDI < 24%)

These results highlight the influence of the spatial distribution
of these variables on agronomic characteristics and soybean crop
productivity, providing valuable insights for understanding
variability patterns in the growing environment.

Based on ordinary kriging interpolation and information from
the Wave model, which best fit the semivariance function for all



Table 1. Descriptive analysis of response and explanatory variables.

Statistics Prod Cu pH RSPy21-030m
Minimum 0.330 0 4.60 1.23
15t Quartile 1.045 0.38 5.50 1.89
Median 1.442 0.68 5.90 2.22
Mean 1.533 0.69 5.82 2.19
37 Quartile 1.988 1.02 6.20 2.47
Maximum 2.909 1.73 6.70 2.96
SD 0.607 0.43 0.43 0.38
CV (%) 39.59 62.69 7.40 17.39
U3 0.38 0.21 -0.49 -0.20
Kur -0.69 -0.84 0.04 -0.77

SD: standard desviation; CV: coefficient of variation; #i3: coefficient of skewness; Kur: coefficient of kurtosis; Prod:
soybean productivity in the 2022/2023 crop year; Cu: copper; RSPy 51 _9.30m: Soil penetration resistance in the 0.21 to 0.30

meters depth layer.

Table 2. Parameters estimates by maximum likelihood and asymptotic standard errors in parenthesis.

RSP RSP
Prod Prod#85 Cu Cu#36 pH pH#99 0.21-0.30m 0.21-0.30m
#46
a 1.794 1.777 0.686 0.687 5.837 5.846 2.198 2.195
(0.356) (0.355) (0.080) (0.081) (0.049) (0.062) (0.113) (0.113)
P 0.229 0.229 0.117 0.118 0.109 0.154 0.095 0.096
(0.191) (0.204) (0.040) (0.040) (0.028) (0.028) (0.034) (0.034)
o3 0.481 0.501 0.061 0.061 0.077 0.030 0.049 0.048
(0.391) (0.402) (0.033) (0.033) (0.029) (0.021) (0.039) (0.039)
P 0.489 0.476 0.166 0.166 0.068 0.146 0.357 0.354
(0.135) (0.127) (0.024) (0.024) (0.004) (0.031) 0.111) (0.110)
a(km) 1.462 1.424 0.498 0.497 0.610 0.438 1.068 1.060
SDI 39.90 40.42 11.38 11.36 16.84 4.76 20.04 19,83
Class strong strong moderate moderate moderate weak moderate moderate

f: mean; @1: nugget; @,: sill; @3: function range; a: range; SDI: spatial dependence index; Class: classification; Prod: soybean
productivity with all observations; Prod#85: soybean productivity without the influential observation #85; Cu: copper with all
observations; Cu#36: copper without the influential observation #36; pH#99: pH without the influential observation #99;
RSPy 21-030m: soil penetration resistance in the 0.21 to 0.30 meters depth layer with all observations; RSPy 51 _g.30m#46: soil
penetration resistance in the 0.21 to 0.30 meters depth layer without the influential observation #46.

the variables under study, a soybean productivity map was
generated (t ha™?), of copper content (mg dm™3), of soil pH and
RSPy 21-030m (MPa) (Figure 4).

Local influence diagnosis

The objective of this section was to verify whether observations
might be exerting local influence on the likelihood deviation,
using local influence diagnosis techniques, employing the C; and
|Lmax| charts as a function of the order of observations (Cook,
1986). The local influence study was conducted for all the
variables under study, using the perturbation scheme proposed
by De Bastiani et al. (2015).

The results of the local influence analysis, illustrated in Figure 5,
reveal the observations that have a significant influence on the
likelihood deviation. The influential observations are: #85 for
soybean productivity; #36 for soil copper content; #99 for soil pH;
and #46 for soil penetration resistance.

As highlighted by Leiva et al. (2020) and Uribe-Opazo et al.
(2023), it is important to note that in spatial statistics, an
influential point is not necessarily an outlier, and vice versa. This
distinction underscores the complexity of spatial relationships
and the need to carefully consider the influence of individual
points on the analysis results.

To assess the effect of influential observations on the analysis of
spatial dependence structure and thematic map generation, the
influential observations were excluded from the database for
each variable, followed by a new analysis of spatial variability.
This methodological approach allows for a deeper understanding
of the spatial distribution of variables, adequately considering
the influence of individual observations on the analysis results.
Considering this new context, without the presence of influential
observations, the results are detailed in Table 2. According to
cross-validation criteria (Faraco et al, 2008), the Akaike
Information Criterion - AIC (Akaike, 1973), and the Bayesian
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Information Criterion - BIC (Schwarz, 1978), for soybean
productivity without observation #85 (Prod#85), the Wave
model, remains as the selected model to describe the spatial
variability presenting similar values for the asymptotic standard
errors.

Additionally, there is a reduction in the spatial dependence range
by 38 meters, while still maintaining a strong spatial dependence
according to the Spatial Dependency Index — SDI.

Likewise, for the other variables under study, without the
influential observations, the selected model to describe the
spatial variability continues to be the Wave model. However,
changes are observed in the parameters estimated by the model.
In the case of copper without observation #36 (Cu#36), the values
are similar for the asymptotic standard errors and for the range.
With regard to pH without observation #99 (pH#99), there was a
substantial reduction of 172 meters in the spatial dependence
range, resulting in a transition from moderate to weak
classification according to the Spatial Dependence Index - SDI.
Finally, for the RSPy31_030m Without observation #46
(RSPy 21_9.30m#46), a reduction in the spatial dependence radius
was observed by 8 meters, maintaining a moderate spatial
dependence according to the Spatial Dependence Index — SDI.

Geostatistical map

When comparing the maps with all the observations (Figure 4
(a)) to those without the observation considered influential
(Figure 4 (b)), it was observed that the spatial distribution of
soybean productivity in the 2022/2023 growing season was
similar, as indicated by the Kappa and weighted Kappa accuracy
indices (Table 4) (K,, = 0.75).

The comparative analysis between the thematic map of copper
(Cu) considering all sample points (Figure 4 (c)) and the map
excluding the influential observation #36 (Cu#36) (Figure 4 (d))
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Fig 3. Experimental semivariance: (a) soybean productivity, (b) Copper, (c) pH, (d) soil penetration resistance in the layer 0.21 to 0.30 meters

deep.

reveals similarity in the spatial distribution of copper values in
the study area.

Copper is an essential element in the plants’ reproductive phase
and consequently in determining crop productivity and quality,
as well as being important for soybean resistance to diseases
(Hansch and Mendel, 2009). In this sense, it is crucial to ensure a
more efficient analysis of spatial variability so that plants receive
an adequate amount of copper in their nutritional diet for
sustainable  development and satisfactory agricultural
production.

When comparing the pH maps, both considering all the points
(Figure 4 (e)) and excluding observation #99 99 (pH#99) (Figure 4
(f), considered influential, significant differences were
identified in the study areas. There is a decrease in the area
corresponding to the upper end of the pH class, ranging from
6.10 to 6.31. The main change is the extinction of the area
associated with the most acidic soils, with values below 5.45,
according to the classification of Santos e Silva (2001).
According to Fagundes et al. (2018), for soybean cultivation, it is
important that soil pH remains within the ideal range from 5.7
to 7.0 to ensure good plant development and satisfactory
production. It is worth noting that soil pH is influenced by
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various factors, such as fertilizer addition, the presence of
organic matter, and soil type. In this sense, it is crucial to monitor
and adjust soil pH to ensure adequate plant nutrition and high
agricultural productivity.

When comparing the two maps for the RSPy 21_930m, study,
Figure 4 (g) with all observations and Figure 4 (h) without the
influential observation #46 (RSPy,1_g30m#46), it is noted
similarity in the spatial distribution of RSPy 1 _¢.30m Vvalues in
the study area.

Soil compaction is a phenomenon that occurs when an external
force is applied to the soil surface, altering its structure and
properties (Keller et al., 2019; Vanderhasselt et al., 2023). In this
study, it was found that the area most affected by soil
compaction was the northern region of the property, where the
terrain has a slight slope. This region also experiences higher
machinery traffic, especially during turnaround maneuvers,
increasing pressure on the soil.

Map comparison

The use of estimates of the Kappa (K) and weighted Kappa (K,,)
accuracy indices provides a non-subjective approach for the
comparative analysis of maps, allowing for the quantification of
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Fig 4. Thematic map of: (a) soybean productivity with all observations; (b) soybean productivity without influential observation #85; (c)
copper with all observations; (d) copper without influential observation #36; () pH with all observations; (f) pH without influential
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the layer 0.21 to 0.30 meters deep without influential observation #46.
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Fig 5. Plots of C; e |Lyqax| as a function of the order of collected observations: (a) C; for soybean productivity; (b) |Lyqx| for soybean
productivity; (c) C; for copper, (d) |Lyax| for copper; (e) C; for pH, (f) |Lyax| for pH; (g) C; for soil penetration resistance in the layer 0.21
to 0.30 meters deep; (h) |Lyax| or soil penetration resistance in the layer 0.21 to 0.30 meters deep.

visually observed differences in the maps. For the variables
soybean productivity, soil resistance to penetration and copper
content soil, a high similarity is observed between the maps
considering all observations and those excluding influential
observations (K,, = 0.75) (Table 4). Regarding pH a modered
similarity is observed between the map considering all
observations and those excluding influential observation (0.4 <
K,, < 0.75) (Table 4).

Materials and methods
Area study and data

The soybean productivity data (Prod) [t ha™'], soil Copper
content (Cu) [mg dm™3], soil pH, and soil resistance to penetra-
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tion in the layer 0.21 to 0.30 m (RSPy21-930m) [MPa] were
selected due to their symmetry and normal distribution. These
data were collected during the agricultural year 2022/2023 in a
commercial area of 167.35 ha located in the western region of
Parana, Brazil, near the city of Cascavel, with the following
geographic  coordinates: latitude  24°57'18"S, longitude
53°34'29"W, and average altitude of 714 m (Figure 1). The
regional climate is mesothermal and super humid temperate,
climatic type Cfa (Képpen), and its soil is classified as typical
Dystrophic Red Latosol with a clayey texture (Santos et al., 2018).
The 102 sampling points were defined using a lattice plus close
pairs sampling approach (Diggle; Ribeiro Junior, 2007; Chipeta et
al., 2017). These points were manually collected and recorded
with a GPS device.



Table 3. Spatial Dependence Index - SDI classification.

Model MF Weak

Moderate

Strong

Wave 0.58900 SDI <11%

11% < SDI < 24%

SDI > 24%

SDI = MF( pon
1 2

)mm{l (OSMD)}IOO ME: Specific factor for each model, ¢1: nugget, @,: sill, a range, MD: is the

maximum distance between two sampling points. Source: (Seidel and Oliveira, 2016; Neto et al., 2018)

Table 4. Kappa index (K) and weighted Kappa index (K,,) for the comparison between the maps obtained with all
observations and the maps obtained excluding the influential observations.

Comparison K R,
Prod X Prod#85 0.967 0.991
Cu X Cu#36 0.992 0.998
pH X pH#99 0.245 0.452
RSPy 71-030m X RSP 21—0.30m#46 0.980 0.996

Classification: K,,20.75 indicates a high similarity; 0.4<K,,<0.75 indicates moderate similarity; K,,<0.4 indicates low or
insufficient similarity; Prod: soybean productivity with all observations; Prod#85: soybean productivity without the
influential observation #85; Cu: copper with all observations; Cu#36: copper without the influential observation #36;
pH#99: pH without the influential observation #99; RSPy 51 _¢30m: Soil penetration resistance in the 0.21 to 0.30 meters
depth layer with all observations; RSPy ;1_g30m#46: soil penetration resistance in the 0.21 to 0.30 meters depth layer

without the influential observation #46.

Geostatistical analysis

To model the spatial dependence structure of a regionalized
variable, a stochastic process Z = {Z(s),s € §} was considered,
where s = (x,y)T is a vector representing a specific location in
the study area § © R?, where R? is the two-dimensional
Euclidean space. It is assumed that the data Z =

(Z(sl),...,Z(sn))T constitute a second-order stationary and
isotropic stochastic process, collected at known locations
(51, --,8n), and modeled by the set Z = ul + &, where pu
represents the constant process mean, 1 represents a vector of
T
onesofsizen Xleg = (e(sl), ...,e(sn)) represents the vector
of random errors,n X 1, with a multivariate normal distribution,
where E(g) = 0 and covariance matrix X, n X n, where X =
2[(0y)] = € (2(s.2(s7)) 1 = 1,..,m
In parametric form, the covariance matrix X can be defined as
X = @I, + p,R(@3), where I, is the identity matrix , ¢; = 0
is the parameter called nugget effect, @, = 0 is the contribution
parameter, 3 = 0 is the parameter defining the range (a =
g(@3)) of the model, and R(¢3) = [(1;)] is a symmetric and
positive definite The
represent the association between points s; and s;, where r;; =
1 |fL=]and hij=0;ri]-=0 lfl?&_]and (P2=O; andr,-]-=
@31C(hy) if i#j and @3'#0, where C(hy)=
C(Z(s;),Z(s;)) is the theoretical covariance function and h;; =
||sL- - sj” is the Euclidean distance between s; and s; (Uribe-
Opazo et al., 2012; De Bastiani et al., 2015).
For the study of spatial dependence structure, omnidirectional
semivariograms  were  constructed using  Matheron's
semivariance function estimators (Equation (1), Cressie, 2015).

7(R)

matrix. elements 135, i,j=1,..,n

N(h)

1
= T(h) Z (Z(Si + h)
2i=1
A M

where, 7(h) is the Matheron semivariance function estimator;
N(h) is the number of pairs of sampled values at locations
separated by the distance h; Z(s; 4+ h) is the value of the variable
Z at point s; + h; Z(s;) is the value of the variable Z at the point
Si.

The Wave model (Olea, 2006) (Equation (2)) was employed to
model the spatial dependence structures, and the parameters
were estimated by the maximum likelihood (ML) method. In
addition to the Wave model, the Exponential, Gaussian, and
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Matérn family models were also employed in the analysis (Uribe-
Opazo et al., 2023).

y(h)

¥3 h
+ 1——sen(—) , h>0
P1 <P2( A 0s ) )

0, h=0
For the Wave model, the first and second-order derivatives of the

h
covariance structure are required 2 = @I, + @, <—stn ((p )),
3

ax 0% h
where:  —=1,; -—— = R(¢p3); = [ in ( ) -
ere: FP) n» 99, . ((pS)’ B(p (pZ S N @3
h 8%y 8%y 8%y
—cos(—] =0 =0, —=0;

@3 6«)1 0 09109, T 091003 T 093 ’
923 1. (h 1 h), 9% @2k . h
==sin(—) ——cos = —2-sin(—).
090903 h P3 P3 P3 6(,03 P3 P3

Maximum Likelihood (ML)

A model Z~N, (11, X) with mean p1 and covariance matrix & =
@11, + @,R, which depends only on the parameter vector ¢
(Diggle and Ribeiro, 2007) is considered. The logarithm of the
likelihood function is defined in Equation (3) in which the vector
of unknown model parameters 60 = (u,@")T and ¢ =
(@1, 92, @3)T can be estimated by maximizing the logarithm of
the likelihood function (Mardia and Marshal, 1984):

1
£(O) = — (;) log(2m) - 5 logz|
- %(z — )T (Z

—pl), 3)
The score functions of 8 = (u, @T)T are U(0) = (U(w), U(p)),

where: U(u) = M =1T2"1(Z — u1) and U(e) = aL(a) that
have as their ]—th elements m———t {Z 1 62}+
2¢pj 0¢;

1 ry-198 g1, ;_ —(7 —
282 a(pj): g j=1,23and € = (Z — ul).

To estimate the parameters p and @, we solve the systems of
equations U(u) = 0 and U(¢@) = 0. The observed information
matrix is defined by L(0) = —L(0) and should be evaluated at

~ L L
0 = 0, its partitioned form is L(0) = (LW me) where,
ou  Log

_0%L®O) _ _ iTy-1q. =17, _ PO
HE T duauT 121 Ly, = Ly pagT with elements
ﬂ — _1T —16_2 -1 P . _ _
oudg; 1z _Z &j=1,..,q where, e = (Z — ul),
2
and Ly, g 2(0;, with elements ;%a((e:j =

1 _1[ 0% «_q1 OZ %% 1 _ %%
—tr{z 1(—2 1= _ >}+—£TZ 1{——
2 2¢; 0p; 0¢i09; 2 09i0¢;



E g1 0% O yq OF
o8 dpj 99; 0;
3.

The expected information matrix is of the form K(0) =

E[-L(6)], It is a diagonal matrix of the form K(6)=

}Z_ls, i,j=1,..,q.Inthiswork g =

K(uw) 0 _ _ L) _
( 0 K((p))’ where  K(u) = E[—LW] =E [— S| =
2
172711, and K(9) = E[-Ly,| = E [— prg(ji]’ Its elements are
() =2 “1 02 g1 O hi= ‘be-
kij(p) = Str [E a(piE a<p]]’ with i,j =1, ..., q (Uribe-Opazo
et al.,, 2012).

The asymptotic standard errors can be calculated by inverting
the information matrix K(8)~! and taking the square root of the
diagonal elements (Uribe-Opazo et al., 2012; 2023).

Local influence
De Bastiani et al. (2015) proposed a generalized perturbation on
1

the response variable Z, = Z + Xz where w is a vector
belonging to the perturbation space Q. The logarithm of the
perturbed likelihood function for the normal model is given by:
£(8,,) = L(8]w) = — (%) log(2m) — log|z| - 3 (2, —
ﬂl)TZ_l(zm - ﬂl)

In this study, the matrix A = (AT,ATQ,)T evaluated in @ = @ and

. . e 02L(6
in @ = wy, is of the form A, = —-1Tx-133; A, = a(p(aal::),

that

_q 0A .
has as elements A(p].: &’ [Z 1 30, DjA], toj=1,..,q, where

1

A=%%¢=e(w,) = (Z—pl),and D; = 2-1;—(’12-1.
Consider the matrix B = ATL™'A where, L is the observed
information matrix, and the element C; = 2|b;;|, fori =1, ..., n,
where bj; is the element of the main diagonal of matrix B. From
matrix C; as a function of i (order of observations) can be used as
a diagnostic technique to assess the existence of influential
observations.

Let L,qr be the normalized eigenvector associated with the
largest eigenvalue in absolute value of matrix B. According to
Cook (1986) the chart of the elements |L,,4x| as a function of i
(order of observations) can reveal the elements that, under small
perturbations, exert the greatest influence on the likelihood
deviation.

Comparisons

The measure of the degree of spatial dependence of the fitted
models was obtained through the Spatial Dependency Index
(SDI) (Seidel and Oliveira, 2014), classified according to Table 3
(Seidel and Oliveira, 2016; Neto et al., 2018). This classification is
essential for interpreting the results and making decisions based
on the spatial dependence analysis in the fitted models.

The similarity between the interpolated maps was assessed by
estimating the Kappa (K) and weighted Kappa (I?W) (Cohen,
1960;1968). The weighted Kappa index (I?W) is relies on weights
w;; to quantify differences. The classification of the weighted
Kappa index is equivalent to the Kappa index (Table 4) (Fleiss et
al., 2003).

Computational resources

All the analyses were performed using the R software (R Core
Team, 2023). Semivariances were calculated using functions from
the geoR package, which was also employed to fit the models
and produce thematic maps (Ribeiro Junior and Diggle, 2001).
The ved package was used to calculate the weighted Kappa index
(Meyer et al., 2021).

Conclusion
The Wave model stood out compared to other models, being the

most appropriate for characterizing the spatial dependence
structure of soybean productivity and soil attributes for the year
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under study. The generated maps not only enabled the
prediction of variables in unsampled locations within the study
area but also allowed for the creation of differentiated
management zones, considering productivity and soil properties.
This approach enables the localized application of inputs, aiming
to maximize economic return and minimize environmental
impacts, resulting in efficient agro-management.

Furthermore, the identification and removal of influential
observations caused changes in the parameter estimates that
define the spatial dependence structure, directly impacting the
characteristics of the sectors of the maps of soybean productivity
and soil attributes. The importance of conducting local influence
diagnostic studies in geostatistical analyses is emphasized to
ensure the robustness and accuracy of the obtained results.
Worthy of note is the potential applicability of the methodology
presented in this work for studying the productivity of other
crops and different soil attributes in various areas and over
different periods, thus expanding its scope and relevance in the
context of precision agriculture and sustainable and rational
management of natural resources.
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