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Abstract: Climate change compromises soybean productivity. The objective of the study was to verify the
impacts of meteorological variables (rainfall, average, minimum and maximum air temperature, potential
evapotranspiration, global solar radiation), and the spectral variable Enhanced Vegetation Index, on soybean
productivity in the state of Parana - Brazil, between the harvest years 2010/2011 and 2019/2020. To this end,
spatial panel data modeling was used to analyze the influence of climate variables and Enhanced Vegetation
Index (EVI) variables on soybean productivity. The results revealed that the Spatial Autoregressive model
with fixed effects was the most appropriate model to analyze previously mentioned. In this model, the
marginal effects showed that soybean productivity is positive and significant space-time correlation with
the variable’s precipitation, average temperature, and EVI, in interval from the phenological phase close to
maximum vegetative development. Furthermore, the variables precipitation and minimum temperature, in
the interval from the sowing date (SD) until close to the date of maximum vegetative development (MVDD),
showed a negative and significant spatial-temporal correlation with productivity. This last result was also
observed in municipalities with higher soybean productivity values. Therefore, it is possible for the soybean
farmer to diagnose the area suitable for planting the crop, in relation to the impacts of climatic variables
and optimize decision-making on soybean cultivation.
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temperature on the crop plantation areas. Tan et al. (2021)

Introduction verified the space-time variability of soybean phenological

phases and sensitivity to the main climatic factors (rainfall and
Soybean (Glycine max (L.) Merrill) has become the main crop of temperature) using a panel dataset from 1992 to 2018 on soybean
Brazilian agribusiness and has significantly contributed to the phenology and meteorological data collected at 51 stations in
economy in various regions of the country. Among these regions, China. The results of this study showed that, in general, the main
the state of Parana stands (Hirakuri, 2021). The development of soybean growth periods were negatively sensitive to
agricultural crops is directly related to local climatic aspects. temperature, whereas rainfall differed between the regions
Among these crops, we can highlight soybean cultivation analysed. Souza et al. (2021) verified the sensitivity of
(Nitsche et al., 2019, Blanc and Reilly, 2017). In this context, agricultural production in municipalities from the northeast
various studies have verified the impact of climate change on region of Brazil in relation to changes in rainfall and temperature
agriculture using panel data analyses (Yuzbashkendi, 2019; levels this and used the methodology for spatial panel data,
Souza, et al., 2021; Tan et al, 2021). Among other issues, considering data from the to 2006-2016 time series. These
Yuzbashkendi (2019) evaluated the impacts of climatic factors on authors concluded that in the last years of the period analysed,
soybean and rapeseed plantation areas in some provinces of Iran agricultural production in northeastern Brazil was more sensitive
using panel data collected throughout the 2001-2016 period. The to changes in rainfall levels. In this way, some researchers chose
results revealed a significant influence of changes in rainfall and to base only on panel studies considering climate variables as
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explanatory variables. According to Blanc and Reilly (2017),
panel models are useful in this context, because they represent
the fact that locations in space differ not only in climate but in
many other variables (e.g., soil quality), which may be correlated
with climate. However, in the agricultural context, there are no
studies that have used the modelling of spatial panel data (a) for
the analysis of the space-time pattern of the climate variables
and vegetation indices obtained from satellite images, in soybean
regions from the state of Parana (Brazil), considering periods
during the crop phenological phases; (b) to verify the sensitivity
of the crop during the intervals of the phenological phases, in
relation to the climate variables; and (c) using smaller spatial
resolutions such as 9 km X 9 km. Thus, the objective of this
study was to verify the impacts of accumulated rainfall (mm),
mean, minimum, and maximum air temperature (°C), potential
evapotranspiration (mm), global solar radiation (MJ/m2/day),
and Enhanced Vegetation Index (EVI) climate variables on
soybean productivity in the state of Parand (Brazil) from
2010/2011 to 2019/2020 harvest years and through spatial panel
data modelling.

Results

Time analysis and spatial autocorrelation corresponding
to soybean productivity

A time and spatial autocorrelation analysis was carried out mean
soybean productivity (t/ha). Observed that the highest
productivity mean yield was found in the 2016/2017, 2017/2018
and 2019/2020 harvest years. In contrast, the 2011/2012 harvest
year had the lowest mean productivity of the historical series
analysed (Figure 1). In turn, the mean yields did not differ
significantly between the 2012/2013, 2013/2014, and 2014/2015
harvest years at 5% significance. Regarding spatial auto
correlation (Supplementary 2 Equation (4), Figure 1) to
productivity in the harvest years analyzed, there was a positive
and significant correlation at the 5% level. This was also evident
in the Lisa Cluster Map for each crop year, with the formation of
two clusters (Figure 2), both with 5% significance. In the Low-
Low cluster, VSs with lower soybean productivity are surrounded
by VSs with the same characteristics. This occurs in the High-
High cluster, the VSs with higher soybean productivity are
surrounded by VSs with the same pattern.

Subsequently, the Global Moran Index (Supplementary 2
Equation (4)), was used to analyse the explanatory variables
selected by means of the NNG method (Table 1) to verify spatial
autocorrelation. A positive and  significant  spatial
autocorrelation was found, with 5% significance, in all variables
analysed, in other words. In addition, a time pattern was
observed among the Global Moran Index values in the
explanatory variables, mainly those related to mean, minimum,
and maximum temperatures, which obtained the highest Global
Moran Index values (Table 1). In contrast, the time pattern with
the lowest values was obtained for the Accumulated Solar
Radiation variable from MVDD to the collection date
(SR_MVDD_CD, Table 1). Subsequently, the presence of spatial
autocorrelation was verified in each cross-section using the
Moran index, calculated in the Simple Regression Model
residuals (Supplementary 1 Table 1). There was positive and
significant spatial dependence with 5% significance in all harvest
years which confirms the existence of spatial dependence
already observed for productivity the dependent variable and for
the explanatory variables of each harvest year (Figure 1 and
Supplementary 1 Table1). Once the presence of spatial
autocorrelation is verified, there is a need to incorporate a spatial
lag into the model (Almeida, 2012).

Spatial panel data models
For panel data modelling, the Breusch-Pagan test was
performed, that the pooled model was not the most adequate. In
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this way, there was a need to add unobserved effects, specific to
each VS and time-invariant, to the pooled model.

A Hausman test was performed to identify the most appropriate
model with fixed or random effects (Supplementary 1 Figure 3),
that was necessary to use the fixed-effects model; that is, the
unobserved and time-constant effects in each VS, such as the
type of soil and altitude, in each VS were captured in the a; term
withi =1,--,n,n = 1,699, which are controlled by the term of
unobserved effects in the regression, although they were not
measured (Nadine and Ntsama, 2022). Thus, the pooled panel
data models with fixed effects and no spatial dependence, the
SAR model with fixed effects with spatial dependence and the
SEM model with fixed effects with spatial dependence were
estimated (Supplementary 1 Figure). The Lagrange multiplier
tests for spatial lag (LM lag) and spatial error (LM error)
indicating the presence of spatial dependence. In addition, in the
robust LM tests, it was verified that the LM lag (robust) was
greater than the LM error (robust) (Supplementary 1 Table 2 and
Supplementary 1 Figure 4). The SAR spatial model with fixed
effects was the appropriate model for this study, the results
based on this model are discussed below. Therefore, for the SAR
spatial model, in the Breusch-Pagan test (5% significance), the
absence of heteroscedasticity was observed in the residuals
obtained by the model. In addition, using the Jarque-Bera test
(Gujarati and Porter, 2011) (5% significance) e, it was observed
that the residuals of the model do not present a normal
distribution. However, given the large number of observations
based on the Central Limit Theorem, this assumption is not
considered (Corréaetal, 2019). The spatial autoregressive
component (p) from the SAR model with fixed effects presented
a positive and significant with 5% (Supplementary 1 Table 3),
which also reveals the presence of spatial autocorrelation in
soybean productivity.

This was also evident when spatial autocorrelation (Table 1). This
result indicates the existence of clusters and that changes in
yields in a given region (in the case of our study, the VSs)
overflow in spatial terms, impacting neighboring regions
(Supplementary 1 Figure 5). In this way, the estimates of the
direct, indirect, and total marginal effects corresponding to the
explanatory variables of the SAR model with fixed effects should
be used to interpret the model. Among the explanatory variables,
only the maximum temperature in the 1b_DMDV_1a interval
was not significant (Table 2). The direct marginal effect of the
rainfall variable, which refers to 8 days before MVDD until the
collection date (1b_MVDD_CD, Table 2), showed that in each
VS, a 1-mm increase in rainfall during this time interval implies
a mean increase of 0.09 (t/ha) in mean soybean productivity, in
the same VS. The indirect effect indicated a 1-mm increase in
rainfall during that same time interval, implying a mean increase
of 0.11 (t/ha) in mean productivity, in all its neighboring VSs.
Therefore, in a general way, it can be asserted that a 1-mm
increase in rainfall during the interval considered implied a
0.20 (t/ha) increase in mean productivity, indicated by the total
effect (Table 2).

A similar interpretation can be made for the EVI variables in the
interval close to the MVDD (1b_MVDD_1a) and in the
SD_MVDD_2a interval, so that this was the variable with the
greatest direct influence on mean productivity among the
variables under study, as an increase of only 0.10 in the EVI value
implies a higher yield (total effect) of 0.45(t/ha) in mean
productivity (Table 2). The mean temperature in the
SD_2b_MVDD interval and potential evapotranspiration in the
MVDD_2a_CD interval presented a pattern similar to that of
rainfall in the 1b_MVDD_CD interval. In addition, potential
evapotranspiration had little impact on mean productivity (Table
2).

On the other hand, the marginal effects of the rainfall variable
in the SD_MVDD_1a interval (Table 2) indicated a negative
impact on mean productivity; in other words, the direct effect
showed that, in each VS, a 1-mm increase in rainfall during



Table 1. Global Moran’s Index corresponding to the explanatory variables for each harvest year.

Variables 2010/2  2011/20 2012/20 2013/20 2014/20  2015/2  2016/20 2017/20 2018/20 2019/20

011 12 13 14 15 016 17 18 19 20
1 0.74 0.52 0.64 0.66 0.58 0.61 0.59 0.75 0.51 0.66
2 0.53 0.55 0.65 0.60 0.50 0.52 0.70 0.61 0.46 0.69
3 0.66 0.56 0.52 0.51 0.54 0.43 0.45 0.47 0.44 0.68
4 0.27 0.50 0.53 0.44 0.31 0.20 0.44 0.30 0.57 0.48
5 0.95 0.94 0.95 0.91 0.97 0.97 0.94 0.98 0.89 0.96
6 0.89 0.94 0.88 0.91 0.93 0.92 0.86 0.95 0.81 0.94
7 0.78 0.81 0.80 0.76 0.90 0.90 0.86 0.88 0.83 0.94
8 0.39 0.47 0.43 0.31 0.24 0.31 0.35 0.50 0.29 0.34
9 0.66 0.41 0.58 0.43 0.60 0.45 0.53 0.53 0.46 0.50

Where: 1: Rain_1b_MVDD_CD 2: Rain_SD_MVDD_1a 3: EVI_1b_MVDD_1a, 4: EVI_SD_MVDD_2a, 5: Tme_SD_2b_MVDD, 6: Trmin_SD_2b_MVDD, 7: Tmax_1b_MVDD_1a; 8:
SR_MDVV_CD; 9: ETp_MVDD_2b_CD, Rain: Accumulated Rainfall (mm), EVI: Enhanced Vegetation Index, Tme: Mean Temperature (°C), Tmin: Minimum Temperature (°C), Tmax:
Maximum Temperature (°C), SR: Accumulated Solar Radiation (M)/m?/day), ETp: Accumulated Potential Evapotranspiration (mm), SD: Sowing Date, MVDD: Maximum Vegetative
Development Date, 1a: Eight days after MVDD, 1b: Eight days before MVDD, 2b: Sixteen days after MVDD, CD: Collection Date, (p<0.05).

Global 0.70 0.67 0.69
Moran Index

2010/2011 2011/2012

&2015/2016 W 2016/2017

0.67 0.67 0.63
2012/2013 42013/2014 W 2014/2015
42017/2018 =2018/2019 12019/2020

Fig. 1. Time distribution and Global Moran index of the mean soybean productivity in the state of Parana; lowercase letters represent the
comparison of mean productivity between harvest years (Z test, p<0.05), the same letters in mean values indicate that productivity is

statistically equal.

the interval considered resulted in a mean reduction of
0.10 (t/ha) in mean productivity in the same VS. In turn, in
relation to the indirect effect, a 1-mm increase in rainfall during
the interval considered implied a mean reduction of 0.12 (t/ha) in
mean productivity in all its neighboring VSs. Thus, in a general
way, a 1-mm increase in rainfall during the interval was
considered in a 0.22 (t/ha) reduction in mean productivity (Table
2).

The minimum temperature variable in the interval from the
sowing date to 16 days before MVDD (SD_2a_MVDD) and the
solar radiation variable in the interval from MVDD to CD
(MVDD_CD, Table 2), which is the period of the year with the
highest amount of solar radiation (Grzegozewski et al., 2017),
had a similar behavior that of rainfall in the SD_MVDD_1b
interval, which presented the lowest negative impact on mean
productivity among the variables analyzed.

In the five municipalities in Parana with the highest productivity
values in the historical series studied (Cascavel, Guarapuava,
Tibagi, Ponta Grossa, and Castro), the same behavior was
observed in relation to the influence of climate and EV variables
on soybean productivity.

For example, the municipality of Cascavel with the highest
productivity values with 3.18 (t/ha), a Tmm increase in rainfall
during the 1b_MVDD_CD interval, indicated by the total
marginal effect (Table 2), imply a 0.62 (t/ha) increase. The same
analysis can be performed for other municipalities and
explanatory variables.

Discussion

Time analysis and spatial autocorrelation corresponding
to soybean productivity

In this study, a soybean yield pattern was observed in different
harvest years in the state of Parand. Similar results were
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observed by Grzegozewski et al. (2020) and Silva et al. (2021),
who evaluated the global spatial autocorrelation and spatial
distribution of productivity in the state of Parana in the harvest
years from 2010/2011 to 2012/2013, using a spatial scale greater
than 9 km X 9 km. Thus, the study revealed greater precision
in the mean soybean productivity pattern in the state.

In relation to the observed results (Table 1), Moran's global index
corresponding to the explanatory variables showed higher values
with the temperature variable. This was due to the regional
homogeneity of the state. (Aparecido et al., 2016).

The variable EVI, which is the vegetation index, representing the
good productive performance of soybeans (Trindade et al., 2019),
in the interval of 8 days before to 8 days after the MVDD
(1b_MVDD_1a; Table 1), presented the highest values in the
2019/2020 harvest year, which was the year with the highest
productivity values (Figure 1).

Spatial panel data models

The Spatial Autoregressive (SAR) model with fixed effects best
fitted the data to explain productivity as a function of the
explanatory variables. This was verified using Lagrange and
robust Lagrange tests, as well as by means of the AIC
(Supplementary 1

Table 3).

Thus, the estimates of the direct, indirect, and total marginal
effects corresponding to the dependent variables of the SAR
model showed that rainfall (Rain_1b_MVDD_CD, Table 2)
exerted a positive effect on productivity. According to
Farias et al. (2007), this is because, in this period, which includes
the grain's flowering and filling period, rainfall influences
soybean development. In addition, the higher water
consumption by the plant coincided with the period in which the
crop presented more height and a higher leaf area index.



Table 2. Direct, indirect, and total effects of the SAR model, with fixed effects.

Variables Direct Indirect Total
Effect Effect Effect
Rain_1b_MVDD_CD 0.09" 0.11 0.20"
Rain_SD_MVDD 1a -0.10° -0.12" -0.22"
EVI_1b_MVDD_1a 0.14" 017 0.317
EVI_SD_MVDD_2a 0.21° 0.24" 0.45"
Tme_SD_2b_MVDD 0.19 0.22" 0.42"
Tmin_SD_2b_MVDD -0.23" -0.27" -0.50"
Tmax_1b_MVDD_1a -0.003NS -0.01NS -0.01NS
SR_MVDD_CD -0.04" -0.04" -0.08"
ETp_MVDD_2a_CD 0.01° 0.01° 0.02"
*(p<0.05), NS: Not Significant.
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Fig. 2. Lisa Cluster Map corresponding to the “productivity ”variable of the following harvest years: a) 2010/2011, b) 2011/2012, ¢) 2012/2013,
d) 2013/2014, e) 2014/2015, f) 2015/2016, g) 2016/2017, h) 2017/2018, i) 2018/2019, and j) 2019/2020.
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Fig 3. Study area in the state of Parana; example of an ECMWEF virtual station (EV) with the percentage of the area of 4 municipalities

(a1, a2, a3, as).

The EVI variable in the interval Tb_MVDD_1a (Table 2) had a
positive impact on productivity, being the moment of the
soybean phenological stages of flowering and pod formation
(from R1 to R3), where in general, the highest EVI values were
observed in the profile temporal spectral (Johann et al., 2016).
The mean temperature variable in the SD_2b_MVDD interval
exerted a positive impact on productivity, as the ideal range for
rapid and uniform emergence is close to 25°C (Farias et al., 2007),
and the beginning of soybean sowing in the state is preferably in
October of each harvest year (Johann et al., 2016) when
temperatures are around this value.

In relation to potential evapotranspiration in the MVDD_2b_CD
interval, the results showed little impact on mean productivity
(Table 2), which can be justified because it is in these
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phenological stages that the smallest amounts of the crop's
potential evapotranspiration are observed.

On the other hand, the accumulated rainfall variable in the
SD_MVDD_1b interval exerted a negative impact on mean
productivity. Excessive rainfall and cloudy days are believed to
cause anomalies in plant development (Pereira et al., 2016). In
addition, during germination, both excess and deficit water are
detrimental to achieving uniformity in the number of plants per
planted area (Silva et al., 2016).

In municipalities with the highest productivity values, rainfall
between the sowing date and 16 days after MVDD
(SD_MVDD_1a), almost 75% of this rainfall volume contributed
to excellent productivity.

The productive performance of the crop can be translated by the
variable EVI, which is a vegetation index that represents the



vigor of the plant (Trindade et al., 2019), and was one of the
highest values of marginal effects observed in this interval.

In relation to the mean and minimum temperature variables in
the SD_2b_MVDD interval, rainfall during this period minimized
the harmful effects of temperature (Birthal et al., 2014), as the
ideal temperature for the period is around 25°C, to provide fast
and uniform emergence (Garcia et al., 2007).

Materials and Methods

Study area

The study area selected was the state of Parana located in
southern Brazil, with a territorial area of 199,298.982 km?,
comprised of 399 municipalities (IBGE, 2022a), and with a Gross
Domestic Product (GDP) of $USD 104 billion in 2021, which
equals 6.67% of the Brazilian GDP during the period
(IPARDES, 2021; Figure 3).

Soybean productivity and climate variables

The mean soybean yield data (t/ha) for the ten harvest years of the
Parand municipalities were obtained from the Brazilian Institute
of Geography and Statistics (IBGE, 2022b).

Data corresponding to rainfall (mm), mean, minimum, and
maximum air temperature (°C), and global solar radiation
(MJ/m2/day) climate variables were obtained using the Google
Earth Engine (GEE) web platform, from the European Center for
Medium-Range Weather Forecast (ECMWF) model with virtual
stations (VSs) offering a spatial resolution of 9km X9 km
(ECMWEF, 2021; GOOGLE LLC, 2021).

In addition to these variables, the potential evapotranspiration
(mm) climate variable was also included (Embrapa, 2022). To
acquire the data corresponding to this variable, GEE was used in
the Colab running environment using Python. In addition, to
determine the values of the productivity and potential
evapotranspiration variables in the same VS locations, ArcGIS
software version 10.3 (ESRI, 2018) was used.

Enhanced Vegetation Index (EVI)

Enhanced Vegetation Index (EVI) values were extracted from the
Moderate Resolution Imaging Spectroradiometer (MODIS)
sensor (Embrapa, 2022).

The EVI spectral-time profile was only considered in the places
mapped with soybean crops using satellite images, avoiding the
analysis in regions with no plantations.

For this purpose, the mappings performed for the following
harvest years were considered: 2010/2011 and 2011/2012 (Souza
et al., 2015); 2012/2013 and 2013/2014 (Grzegozewski et al., 2016),
2014/2015 and 2015/2016 (Verica, 2018); and 2016/2017,
2017/2018, 2018/2019, and 2019/2020 (Paludo et al., 2020). ArcGIS
software, version 10.3 (ESRI, 2018) was used to determine the EVI
values at the same VSs locations.

Timesat software was used from extracted the parameters
Sowing Date (SD), Maximum Vegetative Development Date
(MVDD), and Collection Date (CD) (Savitzky and Golay, 1964).
Furthermore, those that lacked profile characteristics of
soybeans were not considered in the dataset. In this way the
panel database contains 16,990 observations.

Measures associated with the climate variables and of the
Enhanced Vegetation Index

Variables considered as explanatory variables were generated in
the modelling, associated, according to the soybean phenological
phases. Being call variables are the measures associated with the
climate variables (AMVs) and EVI, totalling 98 explanatory
variables.

These measures were defined as follows. For rainfall, solar
radiation, potential evapotranspiration, and EVI, the
accumulated value in each interval was considered, whereas for
the mean, minimum, and maximum temperatures, the mean of
the interval was considered. In addition, the value was
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considered in the MVDD for all variables described in
Supplementary 1 Figure 1.

Subsequently, we verified whether the explanatory variables
exhibited multicollinearity. Multicollinearity imposes a high and
imperfect correlation between two or more explanatory variables
(Wooldridge, 2012). For this, the Variance Inflation Factor (VIF)
measure was used for each explanatory variable, described in
Supplementary 2 Equation (1); Marques et al., 2022).

After verifying the existence of multicollinearity, variables
among the 98 AMVs were selected using the Non-Negative
Garrote (NNG) method, as it presents the best results in papers
related to the selection of variables in a panel data set, described
in Supplementary 2 Equation (2); Vrigazova, 2017; Yuan and
Lin, 2007).

Descriptive analysis and spatial autocorrelation

A descriptive analysis of the mean soybean productivity in each
harvest year was performed, in addition to comparing it between
harvest years via the Z test at 5% likelihood.

Subsequently, spatial analysis was performed using the Global
Moran Index (I) described in Supplementary 2 Equation 4
(Almeida, 2012) to verify the characteristics of the spatial
distribution of the variables under study in each harvest year. To
calculate the Global Moran Index, it was verified whether the
variable presented a likelihood normal distribution behavior by
means of Jones test 5% significance (Jones, 1969). For those that
did not present this pattern, the Box-Cox transformation was
used (Box and Cox,1964).

The Queen spatial weighing matrix was used in this study,
although the Torre matrix was tested, and the results were
similar to Queen. Consequently, the choice was for the Queen
matrix, as the same spatial weighing matrix should be used in all
analyses (Almeida, 2012).

The values of | can be positive between 0 and 1, indicating the
existence of a direct spatial correlation of a variable, that is, VSs
with high values are surrounded by VSs with high values, with a
sense analogous to low values of the same variable. In contrast,
negative values of | between 0 and 1 indicate an inverse spatial
autocorrelation, that is, VSs with high values have neighbors
with low values, or vice versa (Anselin et al., 2005).

Panel data and spatial panel data model

Panel data, it is the combination of cross-section data with time
series, described in Supplementary 1 Figure 2 (Gujarati and
Porter, 2011). Before estimating the spatial model, it is necessary
to verify whether it is appropriate to include unobserved effects
when compared to the clustered data model described in
Supplementary 1 Figure 3 Almeida (2012).

The presence of spatial dependence justifies using spatial panel
data modeling. In this context, among the model they exist the
Spatial Autoregressive (SAR) model and the Spatial Error Model
(SEM) (Supplementary 1 Figure 3; Ortiz et al., 2022).

In the panel model estimates, a combination of two effects was
used: individual and time (two-way). This is because, in this way,
both the effects related to the units (VSs) and to time (harvest
years) are considered.

After verifying the presence of spatial dependence, the following
tests were applied to choose the best spatial model: the Lagrange
multiplier test for spatial lag (LM lag), Lagrange multiplier test
for the spatial error term (LM error), robust spatial lag Lagrange
multiplier test (LM lag (robust)), and robust spatial error term
Lagrange multiplier (LM error (robust)). A significance level of 5
% was used to perform the tests described in Supplementary 1
Figure 4 (Anselin et al., 2008).

In addition to using the Lagrange Multiplier tests to select the
best spatial model, the Akaike Information Criterion (AIC)
(Almeida, 2012).

After selecting the best model, the normality and
homoscedasticity assumptions were verified in the residuals
from the selected model. This verification of the assumptions



becomes necessary to check the robustness of the parameters
estimated by the regression models of panel data analyses, 5%
significance level was used for both tests (Arruda et al., 2015).
The normality assumption was used to determine whether the
error of the model presented a normal distribution. One way to
verify normality is to use the Jarque-Bera test (Gujarati and
Porter, 2011). However, based on the Central Limit Theorem, and
given the high number of observations, this assumption can be
waived (Arruda et al., 2015). To verify whether the distribution of
the residuals was homoscedastic, the Breusch-Pagan test was
used (Coscarelli et al., 2011).

One of the main interests of regional scientific studies is to verify
the impact of changing a certain VS in the neighborhood. For
this, the concepts of direct and indirect effects are used. That is,
the direct effect measures the change in the impact of an
explanatory variable of a given VS, in relation to the dependent
variable of that same VSs. On the other hand, if there are
changes not only in the dependent variable in that VS, but also
in the dependent variable in other VSs the indirect effect
(Elhorst, 2014).

The local indirect effect is the impact of a given region on its
closest neighbors, defined through the connectivity of the weight
matrix. In our study, we used the Queen weight matrix (Guliyev,
2020).

Thus, when considering a given virtual station, called the system
origin virtual station (VS1), what happens in VS exerts a local
indirect effect on the neighboring VSs, determined by the
connectivity defined by the Queen weight matrix (VS to VSo;
Supplementary 1 Figure 5). In turn, the global indirect effect
consists of the overflow of what happens in a given VS to all
other VSs surveyed.

A phenomenon that occurs in overflow is called feedback, which
is a characteristic of the spatial regression model and arises as a
result of impacts between neighboring units (Lesage and Pace,
2009). This can be seen in Supplementary 1 Figure 5 between VSs
and VSs (indicated by the red arrow); that is, the impact that VS
exerted on VSs ends up returning to itself. With the expansion of
this behavior among several VSs, a simultaneous feedback effect
occurs; that is, all VSs both exert an impact and are
impacted (Lesage, 2008).

The intensity of the feedback depends on the position of the VS
in space, the degree of connectivity between the VSs determined
by the weight matrix, the spatial dependence degree, and the
estimated values of the f coefficients associated with the
explanatory variables (Lesage, 2008).

One of the advantages of estimating the SAR spatial lag model
is the possibility of quantifying overflow effects through
measurements of the following marginal effects: direct, indirect
and total (Souza et al., 2021).

Thus, for the SAR model, the direct and indirect effect measures
were calculated through the partial derivatives of the expected
value of the SAR model dependent variable in relation to each
explanatory variable. This calculation will result in matrix
SSW)=(, — pW)I,B, sized nxn, where I,, is an
identity matrix (n X n); W is the spatial weight and positive
matrix sized n X n; since in this research the Queen spatial
weight matrix was used; p is the spatial dependence coefficient;
and By is the coefficient associated with the k-th explanatory
variable (Lesage and Pace, 2009).

Thus, the direct marginal effect in relation to the k-th
explanatory variable (k =1, ...p) corresponds to the mean of
the elements on the main diagonal ((sx(W);;) of matrix S (W)
where i =1,...,n. On the other hand, the indirect marginal
effect measure in relation to the k-th explanatory variable (k =
1, ...p) corresponds to the mean of the elements off the main
diagonal ((sx (W);;) of matrix S (W), withi,j = 1,..,nand i #
J.

Furthermore, it was defined a climatological profile was outlined
for the five municipalities in Parana, which were the largest
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soybean producers in the state in the time series analyzed,
representing approximately 7% of the state's productivity in each
harvest year, namely Cascavel, Guarapuava, Tibagi, and Ponta
Grossa.

Thus, an exploratory analysis of the rainfall and mean and
minimum temperature explanatory variables was conducted in
these municipalities. These variables were selected because they
are the climatological variables with the greatest determining
factor for the explanation of agricultural productivity in the
panel data spatial model.

Selection of the variables, analyses of the models in panel data,
and statistical tests were performed using the following R
software packages: glmnet, nnGarrote, car, plm, plmtest, phtest,
slmtest, spdep and pspatreg (R DEVELOPMENT CORE TEAM,
2022).

Conclusions

In all crop years analyzed, the spatial autocorrelation of
productivity showed positive and significant values, indicating
that productivity in virtual stations (EVs) with higher or lower
soybean vyields is surrounded by EVs with the same
characteristics. The results revealed that the Spatial
Autoregressive model with fixed effects was the most suitable
model for analyzing variables in studies. The spatial parameters
of the model and the Moran index indicated that changes in the
productivity of a given VS affect the productivity of neighboring
VSs. Furthermore, the estimates generated from the marginal
effects of the SAR model revealed that, from 2010/2011 to
2019/2020, soybean productivity was positively related to
precipitation in the interval 1b_MVDD_CD, with EVI, with the
average temperature in the interval SD_2b_MVDD, and
potential evapotranspiration in the MVDD_2a_CD interval.
However, it was negatively related to precipitation in the
SD_MVDD_1a interval, minimum temperature in the
SD_2b_MVDD interval and solar radiation in the MVDD_CD
interval. This was also observed in municipalities with higher
soybean productivity. Based on the results obtained, it is possible
for the gardener to diagnose the appropriate area for planting
the crop, in relation to the impacts of climate variations and
optimize decision-making about soybean cultivation.
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