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Abstract: This study aimed to evaluate the effect of silicon mitigation (Si) on Khaya ivorensis exposed to

i cadmium (Cd) and anatomical changes promoted by Cd in roots and leaves tissues. O delineamento
21/04/2024 experimental foi inteiramente casualizado em esquema fatorial 4 x 4 com cinco repeticoes. Cd and Si
. treatments were 0, 25, 50, 75 mg L™ and 0, 100, 150, and 300 mg L™ respectively. At 25 mg L' mg, Cd has
Revised: shown increases of 30%, 25%, and 33% in Epidermis thickness from adaxial (ETAd), spongy parenchyma
16/09/2024 thickness (SPT), and root cortex thickness (RCT). Also, 75 mg L' Cd decreased epidermis thickness from
abaxial (ETAb) and root cortex thickness (RCT) by 70% and 81%. However, Si attenuated anatomical changes

Accepted: caused by Cd. It occurs especially in combination with treatments at 150 mg L' Si and 50 mg L' Cd. Under
11/10/2024 these conditions, ETAb increased by 33%. Both palisade parenchyma thickness (PPT) and spongy

parenchyma thickness (SPT) were 48% and 55% thicker than tissues under 50 mg L' Cd. The K. ivorensis is
tolerant to Cd up to 25 mg L' mg because it did not show considerable growth reduction. Si has shown
modulation in tissue thickness. It has a positive impact on the vegetative growth of K. ivorensis . Therefore,
this study indicates that K. ivorensis tolerates Cd toxicity up to 25 mg L' Cd and shows that Si induces

anatomical modulations in leaves and roots.

Keywords: Si stress mitigation; Cd stress; mahogany; anatomical modifications; heavy metal.

Abbreviations: ETAd_Epidermis thickness from adaxial; ETAb_epidermis thickness from abaxial; PPT_palisade parenchyma thickness;
SPT_spongy parenchyma thickness; PPT/SPT ratio_palisade parenchyma thickness/spongy parenchyma thickness ratio; RD_Root
diameter; RCT_root cortex thickness; VCD_vascular cylinder diameter; VED_vessel element diameter.

Introduction

Cadmium (Cd) is a highly toxic heavy metal (HM) that affects
plant growth in natural or artificial environments (Song et al.,
2019). Cd is largely a pollutant, which is released into nature
through anthropogenic action (e.g. power stations, heat systems,
waste incinerators, urban traffic, cement factories, and
phosphate fertilizers as by-products), but also weathering of
rocks (Sanita di Toppi and Gabbrielli 1999; Andresen and Kupper
2013).

The Cd toxicity mechanisms in plants were studied and
described in classic review articles (Das et al., 1997; Benavides et
al., 2005). Plants affected by Cd have shown a reduction in their
growth. It was caused by disorders such as physiological,
nutritional, biochemical, and anatomical. For example, Cd hurts
plants because it promotes reductions in gas exchange (Song et
al., 2019). In addition, Cd reduces essential nutrient content
(Gomes et al., 2013), induces oxidative stress (Pereira et al., 2018),
affects nitrogen metabolism (Chaffei et al., 2004), reduces the
size of endodermal cells and the promotes disintegration of root
epidermis (Vitoria et al., 2003; Liza et al., 2020).
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Silicon (Si) is the second most abundant element in soils. It is not
considered an essential element to plants (Epstein 1999;
Marschner 2012), but it induces tolerance in plants, which was
submitted to abiotic stresses such as HM toxicity (Ali et al., 2016;
Pereira et al., 2018; Ali et al., 2019), water deficit (Saud et al., 2014;
Safoora et al.,, 2018; Avila et al., 2020), salt stress (Liang 1999;
Torabi et al., 2015; Raza et al., 2019). Furthermore, Si improves
gas exchange, water use efficiency, and plant growth (Silva et al.,
2015; Oliveira et al., 2019).

The mechanisms of promoting tolerance in plants to HM are
diverse and modulated by Si. In vegetables, Si induces HM
tolerance by reducing its absorption and promoting its
immobilization in root apoplast. As a consequence, chelating
HM, coprecipitating Si bound, reduces oxidative stress,
improving gas exchange and increasing absorption of essential
nutrients (Adrees et al., 2015).

The first organ to come into contact with HM is the root system
which is present the in vegetal growth substrate. Also, the first
to manifest morphological, anatomical and physiological results
of HM toxicity (Pérez Chaca et al., 2014). On the other hand,
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leaves are organs that are exposed to the air environment, which
becomes more sensitive and has plasticity characteristics to
environmental changes compared to other organs (Vaculik et al.,
2015). Thus, leaves are indicators organs that have shown how
the surrounding environment of plants is, as well as
morphological and structural characteristics that are ecological
indicators of plant habitat (Farooq et al., 2016; Greger et al.,
2016). In this context, HM toxicity is a stressful factor because
promotes changes in the dimensions of leaf and root tissues, as
well as on the surface of organs, such as stomata, epidermis and
plant attachments (Li et al., 2007; Shi and Cai 2009; Cui et al,,
2017; Pereira et al., 2017; Xu et al., 2017).

African mahogany or Khaya ivorensis A. Chev. (K. ivorensis) is a
tree species of african origin belonging to the Meliaceae family
(Ribeiro et al., 2017). The species has great economic potential for
commercialization because of its noble wood, which can be used
in industry, naval and civil constructions, panels and laminates
industries, among others (Pinheiro et al., 2011). K. ivorensis is a
heliophile species, tolerant shade during its juvenile stage, which
was classified as a pioneer and secondary species emerging
(Budowski 1965; Denslow 1987; Foli 2000). In the literature, there
is no record of the mitigating action of Si on the effects of toxic
levels of Cd on the growth and anatomical characteristics of K.
ivorensis plants since the species is not an accumulator of Si and
Cd.

The hypothesis guiding this study was that increasing levels of
Si improve the growth and anatomical parameters of K. ivorensis
under toxic levels of Cd and that this species tolerates low levels
of Cd. Research aimed to evaluate the mitigation effects of Si on
K. ivorensis exposed to cadmium, as well as anatomical changes
promoted by Cd in root and leaf tissues.

Results

Cadmium and silicon content

According to polynomial adjustment (Zcd leaf and Zcd root), Cd
content in leaves (Figure 1B), and roots (Figure 1A) was high in
Cd toxic treatments. Leaves and roots showed different Cd levels
in response to Cd treatments. At 25 mg L7 Cd treatment, Cd
content followed decreased order of root (19.78 mg kg' DM) >
leaf (11.47 mg kg DM). However, as Cd treatment increased,
there was an increase in Cd content in leaves. In the treatment
of 75 mg L7, there was a high accumulation of Cd in leaves,
which reached a maximum point of 57 mg kg' Cd DM. Cd
content was found at 45% higher than the root submitted to the
same treatment and 87% higher than the control.

The Si supply reduced Cd levels in different evaluated organs of
K. ivorensis . Canonical analysis showed 38 mg L' Cd and 141 mg
L7 Si interaction as the lowest Cd content obtained in leaves
(Figure 2C and 2B). In these interactions, Cd levels were 60% less
than levels found at 50 mg L' Cd. The minimum Cd content
point was in the root system (Figure 2C), with the value of 4.8
mg kg Cd DM which occurred in the presence of 150 mg L' Si
and the absence of Cd. However, there was a reduction of 26% of
Cd root content in the interaction between 50 mg L' Cd and 150
mg L' Si. The concentrations of 25 mg L' Cd and 50 mg L Si
did not affect Si content in all evaluated organs. The minimum
levels of Si contents in leaves (0.012 mg kg Si DM) and roots
(0.18 mg kg Si DM) were observed only at 75 mg L' Cd (Figure
2C, 2B and, 2A).

As Si concentration increased, also there was an increase in Si
content in evaluated organs of K. ivorensis . The polynomial
equation (Zsi leave and Zsi root) showed maximum points of Si
contents at 150 mg L' Si concentration, which reached a mean
of 4.9 and 7.7 mg kg 7' Si DM in leaves and roots respectively. Si
accumulation in K. ivorensis was observed in root > leave (Figures
2A and 2B). According to the polynomial equation in plants
treated with Cd, high Si content in leaves and roots was obtained
between the interaction of Si and Cd at 27 mg L' Cd and 132 mg
L1Si; 30 mg L' Cd and 151 mg L' Si. These also resulted in the
highest levels of Si in leaves and roots compared to plants at 50
mg L7 Cd concentration.
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Fig 1. Cd content (mg kg DM) in roots (A) and leaves (B) of
Khaya ivorensis plants under silicon and cadmium treatments.
ZCd Leaf = 3.96858" + 8.51915°X - 0.62525"Y + 1.335397°X2 -
0.20243"YX + 0.845977Y2 R2 = 0.81; ZCd Root = 20.09769" -
11.15876°X - 1.12187"SY - 2.08924'X2 - 1.75749°YX - 0,4.17401"Y2
R?=0.89; * significant diferences at 5%; ** significant diferences
at 1%; ns: no significant.

Growth parameters

Height (H), leaf area (LA), and root length (RL) get through
similar variations in response to the increased value of Cd
treatments. However, combined treatments between Cd and Si
have shown that Si promoted improvements in the growth of K.
ivorensis (Figure 3). The growth parameters H and LA were
reduced by 49 and 60% in 75 mg L' Cd treatment compared to
control, respectively (Figure 3A and 3B).

According to bivariate analysis, the highest means of H, LA, and
RL were observed in the absence of Cd and the intermediate
concentration of Si. Treatment with 150 mg L of Si induced
increases in all growth variables, with more significant effects on
RL (Figure 3). The concentration of 150 mg L™ of Si promoted a
maximum point of 20 cm root™. This average was 76% higher
than that of plants treated with 50 mg L™ of Cd.

The significant interaction between Cd and Si concentrations
improved growth variables. Canonical analysis resulted in
optimal growth levels occurring in 41 mg L' Cd and 145 mg L™
Si interaction. In this interaction, there were increases of 33% in
H and LA (Figure 3A and 3B). About RL, there was a 58% increase
compared to 50 mg L' Cd (Figure 3C).

Leaf anatomical parameters

Concentration of 25 mg L' Cd increased the thickness of the
abaxial (ETAb) and adaxial (ETAd) epidermis of K. ivorensis
between 25% and 30% compared to control, respectively (Figure
4A and 4B). Treatment with 50 mg L' Cd causes the thickness
the of vascular bundle sheath (Figur C). The concentration of 25
mg L7 Cd increases spongy tissue thickness (SPT) (Figure 4D).



Fig 2. Si content (mg kg’ DM) in roots (A) and leaves (B) of
Khaya ivorensis plants under silicon and cadmium treatments.
Zsi leaf = -7.60881*" + 6.75170**X + 2.37499**Y - 0.85133"*X2 -
0.27441**YX - 0.45728"*Y%2 R2 = 0.95; Zsi root = -7.55413"" +
7.58789**X + 2.12173**Y + 1.02241**X%2 - 0.24372°*YX -
0.45438"*Y? R2=0.96; * significant diferences at 5%; ** significant
diferences at 1%; ns: no significant.

Even though the magnitude of the increase was smaller than in
the ETAb and ETAd, it was little significant in the thickness of
spongy parenchyma (PPT). The lowest mean of the PPT/SPT
ratio was observed at 25 mg L' Cd (Figure 4E). Above 25a mg
L Cd there was reduction in ETAp, ETAd, PPT and SPT of K.
ivorensis lea,ves (Figure 4A, 4B, 4C and 4D). However, this effect
was not observed in the PPT/SPT ratio, which increased with
increasing Cd concentration (Figure 4E). The interaction
between Cd and Si considerably increased STA,b, ETAd, and SPT
(Figure 4A, 4B and 4D). These anatomical parameters have
shown the best interaction between Cd and Si which was
between 50 mg L' Cd and 150 mg L' Si.

Concerning cells from STAb, ETAd, and SPT tissues of plants
treated with 75 mg L1 Cd there was a loss of cell structure and
reductions in intercellular spaces compared to the control plants
(Figure 6E). Minimum thickness points of STAb, ETAd, and SPT
were 4.5um, 5.8um and 17pm. These values were 73%, 70%, and
68% lower than control.

There was a compact arrangement of epidermal cells in the 150
mg L' Si and 50 mg L' Cd interaction. Furthermore, in this
interaction, there was an increase in the epidermal thickness of
leaf tissues (Figure 6D). Canonical analysis has shown optimal
points between the interaction of Cd and Si, which occurred in
combination with 45 mg L'" Cd and 165 mg L' Si with an increase
in the thickness of leaf tissues (Figure 6).
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Root anatomical parameters

There were wide variations in root tissue thickness, as well as Cd
concentrations increased in the culture medium (Figures 5 and
7). Even though K. ivorensis was treated with 25 mg L' Cd, they
did not show anatomical changes compared to the control.
Except for root cylinder thickness (RCT) (Figure 5B) and root
vessel element diameter (VED) (Figure 5D). The concentration
of 25 mg L7 Cd increased by 33% and 28% RCT and VED.
According to the fit of the regression equation, the maximum
point of the RCT and VED were 120 and 55 pm (Figure 5B and
D). According to surface analysis of response, RCT and VED at
75 mg L' Cd were reduced by 81% and 80%, respectively (Figure
5B and 5D). However, Si has been minimized to the toxic effect
of Cd between the interaction of 40 mg L' Cd and 150 mg L' Si.
These interactions, resulted in values of RD 250 um and VED
58um. These averages above of DR and VED represent increases
of 53% and 56% compared to plants at 50 mg L' Cd, respectively.

Discussion

Increased Cd content in leaves and roots was observed in K.
ivorensis (Figure 1). However, above 25 mg L' Cd high levels of
Cd were observed in shoots and roots coinciding with a
reduction in H, LA, and RL. Thus, indicates that even in this
concentration K. ivorensis tolerates the toxicity of Cd. Cd
content treatment in roots of K. ivorensis was 42% higher than
in leaves. These results suggest the potential of K. ivorensis to
accumulate Cd in the leaf (Cd content of 11.47 mg kg DM) and
root (Cd content of 19.78 mg kg™’ DM). These Cd concentrations
in leaves and roots of K. ivorensis plants exceed the values of Cd
concentrations observed in other plant species such as in Populus
alba (Rafati et al., 2011) and Prosopis juliflora (Varun et al., 2011)
which are phytoremediation potential plants. Cd is a non-
essential element that negatively affects plant growth (Das et al.,
1997; Benavides et al., 2005). Fan et al., (2011) in a study with
plants of Swietenia macrophylla showed that this species
accumulated 154 mg kg Cd DM in the stem, with a reduction
of 25% and 31% in the dry mass of the stem and the whole plant,
respectively. Decreases in plant growth functionally connected
to the negative impact of Cd on gas exchange parameters (Lopez-
Climent et al., 2011), chlorophyll fluorescence (Pirselova et al.,
2016), chlorophyll content (Li et al., 201,2) and nutritional status
of Cd treated plants (Jibril et al., 2017). However, exogenous Si
supply minimizes the effects of Cd on growth because it reduces
Cd uptake and transport to the aerial part of plants. This
mechanism of action of Si improves gas exchange (Farooq et al.,
2013), chlorophyll fluorescence (Howladar et al, 2018),
chlorophyll contents (Ali et al.,, 20,19) and nutritional status
(Alzahrani et al., 2018), which allows growth gains even under
conditions of mild to moderate Cd toxicity in plants, as
evidenced in these study.

Until 25 mg L' mg Cd K. ivorensis presented thickness of
evaluated tissues (ETad, ETAb, PPT, and SPT). The epidermis cell
wall accumulates a considerable amount of negative charges
from functional groups such as -OH, -COOH and -SH
(Krzestowska et al., 2011). The thickness of the epidermis can
expand its function as a metal ion filter (AraGjo and Silva 2013).
However, high Cd treatments reduced the thickness of tissues
evaluated (ETad, ETAb, P,PT and SPT), size of cells and induced
loss of cell shape (Figure 6), in specific of treatment at 75 mg L'
Cd. Toxic Cd affected the expansion of leaf tissues of tomatoes
(Djebali et al., 2010). In bean, Cd reduced relative water contents
and inhibited cell expansion, which indicates that HM negatively
affects cell extensibility (Poschenrieder et al., 1989).

Anatomical modifications were induced by Cd, which implies
decreases in leaf area and, consequently, a reduction in the
photosynthetic capacity of plants (Chugh and Sawhney 1999; Di
Cagno et al., 1999). Cotton plants have shown a reduction in the
thickness of up and low epidermal and spongy parenchyma in
response to 200 pM of Cd (Ozyigit et al., 2013). Similarly,
Alternanthera tenella treated with 150 uM has shown a reduction



Means
=
=
=
£
£
=
=)
‘S
=}
N
( ;3 ) Means
7000 =
6000 =
=
5000 =
&£
4000 =
=
3000 o
o ¥
= Means

Z [RL (cm plant?)]

\]
s

Fig 3. Height (A), leaf area (B), and root length (C) of Khaya
ivorensis plants under silicon and cadmium treatments.

ZH = 110.27469"*- 0.83716Y** + 0.21975X™" + 0.00498Y2** +
0.00095XY™™ - 0.00062X%** R2 = 0.77; ZAF = 6189.17485*" -
78.16847Y** + 6.58098X** + 0.47423Y2** + 0.05197XY**
0.02076X%** R2=0.91; Zcr = 15.65691*™ - 0.26992Y** + 0.07626X™*
+0.00169 Y2** - 0.00010XY"s - 0.00015X2** R% = 0.82; * significant
diferences at 5%; significant diferences at 1%; ns: no
significant.

in thickness of up and low epidermis, and palisade and spongy
parenchyma (Rodrigues et al., 2017).

The 25 mg L' Cd treatment increased the thickness of VCD and
VED. However, high Cd treatments reduced the thickness of
these evaluated root tissues. In addition, there was great
accumulation and transport of Cd from the root system to shoot
in high Cd treatments. The great thickness of the epidermis and
endodermis acts as a barrier to Cd transport to shoot. Due to the
presence of negative charges on the cell wall of these tissues
(Melo Marques et al., 2011; Krzestowska et al., 2011). The
epidermis and endoderm also represent an important apoplastic
barrier for the radial transport of ions and water in the vascular
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system (Enstone et al.,, 2002; Enstone and Peterson, 2005). Root
anatomy results found in these studies suggest that K. ivorensis
is sensitive to concentrations greater than 25 mg L' Cd.
Chickpea plants treated with Cd (250 - 1000 pM) have shown
considerable reduction in root diameter and root tissue thickness
(Liza et al., 2020), similar to results found in the present study. In
rice crops, Cd was deformed and disarranged cells in the cortex
(Fan et al., 2016). On the other hand, Brachiaria decumbens
grown in soil contaminated with Cd (mixture of soil without Cd
+ soil containing 10.5 mg kg Cd in proportions of 7.5 and 15%)
have shown higher thickness of endoderm, exoderm, and cell
wall of cortical cells (Gomes et al., 2011).

Treatments combined between Si with Cd improved shoot and
root growth. This improvement was connected to positive
changes in leaf anatomy caused by Si. Supply of Si reduced the
negative impact of Cd on growth and anatomical variables,
specifically in the treatment of 150 mg L7 Si. Several studies
report the role of Si in the mitigation of harmful effects of HMs
on the growth of rice (Fan et al., 2016; Bari et al., 2020), corn
(Cunha et al., 2009; Vakulik et al., 2012), cotton (Anwaar et al.,
2015; Ali et al., 2016), wheat (Ali et al., 2019) and alfalfa (Wu et
al., 2015). In wheat and rice, Si increases the suberization of
ectoderm and endoderm. It also decreases Cd transport to shoot,
which contributes to improving plant growth (Fleck et al., 2011;
Wau et al., 2019). In addition, Si induces ion chelation through
exudates released from the root or by decreases in the amount of
free ions in vegetable organs. These two strategies reduce the
transport of toxic ions to aerial parts of plants (Adrees et al.,
2015). According to surface analysis, a concentration of 150 mg
LT Si improved growth and anatomical parameters evaluated in
leaves and roots. These results coincided with a great
accumulation of Si and a reduction in the accumulation of Cd in
K. ivorensis (shoot and root).

The study has shown that K. ivorensis tolerates Cd toxicity up to
25 mg L' Cd because plant growth was little affected compared
to control. Also, this research has shown that a concentration of
150 mg L' Si improved the thickness of leaf tissues important to
vegetative growth, specifically STAb, ETAb and SPT. These
tissues are important to diffuse CO2 from the environment to the
carboxylation site in chloroplasts (Ennajeh et al., 2010). The high
STAb, ETAb favors less water loss because the epidermis is the
layer that contributes to the efficiency of water use, which
reduces its loss during the transpiration process (Javelle et al.,
2011). Higher VED and VCD induced by Si in K. ivorensis indicate
that the great thickness of these tissues can facilitate the
transport of water and nutrients through symplast (Meyer et al.,
2011).

Materials and methods

Plant material, growth conditions, and experimental
design

The experiment was carried out in a greenhouse at the Federal
Rural University of Amazon, Belém, Para - Brazil (01° 28'03” S
and 48° 29'18” W). During the experimental period, averages of
temperature and relative humidity of air were recorded in the
inside greenhouse at 30 + 4 ° C and 90 + 3%, respectively. Young
plants of african mahogany, Khaya ivorensis A. Chev (K.
ivorensis), 120 days old and average height of 60 cm were
transferred to pots of 5 L, which contains a nutrient solution with
25% ionic strength (Sarruge, 1975). The changed nutrient solution
was made in intervals of seven days. The pH of the solution was
maintained at 5.8 + 0.2. The plants remained under these
conditions for 60 days. After that, the ionic strength of the
nutrient solution was changed to 100% where Cd and Si
treatments were applied for 60 days. The experimental design
used was randomized blocks organized in a 4 x 4 factorial scheme
(cadmium and silicon concentrations). Assessments were carried
out when the plants reached 120 days old.
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Fig 5. Change in root diameter - RD (A), root cortex thickening - RCT (B), vascular cylinder diameter - VCD (C) and vessel element diameter
- VED (D) of Khaya ivorensis plants under silicon and cadmium treatments. Zrp = 1297.07468"" + 3.49697**X - 0.76551*Y - 0.00783*X? -
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Fig 6. Leaf transversal sections of Khaya ivorensis plants under silicon and cadmium treatments. Capital letters represent Cd and Si
treatments in mg L. A (Cd 0 x Si 0); B (Cd 0 x Si 150); C (Cd 50 x Si 0); D (Cd 50 x Si 150); E (Cd 75 x Si 0); F (Cd 75 x Si 150). Bars: 200 pm.

Cadmium and silicon treatments

During 60 days, plants were exposed to cadmium and silicon
treatment interaction. For Cd (cadmium chloride)
concentrations were 0, 25, 50, and 75 mg L. For Si were 0, 100,
150, and 300 mg L' (sodium metasilicate) with five repetitions.

Anatomical analyses

Samples were collected from the middle region of the leaf
branch. Leaves were fully expanded from the third node and 5
cm of root apex. After that, all material botanicals collected were
fixed in FAA 70 for 24 hours dehydrated in ethanol, and soaked
in Historesin Leica TM (Leica, Nussloch, Germany). Cross
sections with a thickness of 5 um were obtained through rotative
microtome (model Leica RM 2245, Leica Biosystems). Sections
were stained with toluidine blue (O'Brien et al., 1964). Lamines
were observed and photomicrographed under an optical
microscope (Motic BA 310, Motic Group Co. LTD.) coupled to a
digital camera (Motic 2500, Motic Group Co., LTD.). Previously
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calibrated with micrometer lamine, images were analyzed with
Moticplus 2.0. Anatomical parameters evaluated were: epidermis
thickness from adaxial (ETAd), epidermis thickness from abaxial
(ETAb), palisade parenchyma thickness (PPT), spongy
parenchyma thickness (SPT) and PPT/SPT ratio. Root diameter
(RD), root cortex thickness (RCT), vascular cylinder diameter
(VCD) and, vessel element diameter (VED) were measured in
root samples

Cadmium and silicon content

The Cd content was determined according to Miyazawa et al.,
(2009). Samples of 0.5g dry matter (leaf, stem or root) were
digested in a digester tube with 8 mL of nitric acid and perchloric
acid solution (3:1). The cadmium content was determined by
atomic absorption spectrometry. The Si content was determined
according to Kraska and Breitenbeck (2010) through wet
digestion. In 0.1 g of dry matter (leaf, stem or root), 2 mL of 30%
hydrogen peroxide and 0.1 M of sodium hydroxide were added.



Fig 7. Root transversal sections of Khaya ivorensis plants under silicon and cadmium treatments. Capital letters represent Cd and Si
treatments in mg L. A (Cd 0 x Si 0); B (Cd 0 x Si 150); C (Cd 50 x Si 0); D (Cd 50 x Si 150); E (Cd 75 x Si 0); F (Cd 75 x Si 150). Bars: 200 pm.

The reaction was incubated the in oven at 95 °C for four hours.
Ammonium fluoride (NH4F) was added at 5 mM in samples to
facilitate the formation of monosilicic acid. Absorbances were
determined using a spectrophotometer at 630nm (Hallmark et al.,
1982).

Growth parameters

Plant height (H) and root length (RL) were measured with a
millimeter ruler. The leaf area was determined after scanning
and processing the images obtained using the Image] Software.

Statistical analysis

The statistical package “Statical Analysis System” (SAS Institute,
1999) was used for data analysis. The regression equation model
Y (X1, X2) = BO + B1X1 + B2 X12 + B3 X2 + B4X22 + B5X1 * X2
was generated by procedure PROC Rs reg. The F test was
performed to significance (p<0.05) of the interaction between
cadmium and silicon concentrations. Then, response surface
analysis was performed.

Conclusion

This study presents unedited evidence about the effect of
cadmium and silicon on Khaya ivorensis because were founds
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toleration of cadmium toxicity up to 25 mg L7 Cd without
considerable growth reduction. Furthermore, silicon has shown
a positive modulation in tissue thickness, which is important to
water use efficiency and CO2 carboxylation with positive
impacts on the vegetative growth of Khaya ivorensis. Therefore,
this study indicates that Khaya ivorensis tolerates cadmium
toxicity up to 25 mg L' Cd and positively responds to anatomical
modulations induced by silicon.
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